使用随机森林、被动攻击和梯度增强的假新闻文章分类

S. T. S., P. Sreeja, Rajeev J Ram
{"title":"使用随机森林、被动攻击和梯度增强的假新闻文章分类","authors":"S. T. S., P. Sreeja, Rajeev J Ram","doi":"10.1109/CSI54720.2022.9924131","DOIUrl":null,"url":null,"abstract":"Because of the exponential expansion of knowledge available on the internet, it is becoming impossible to decipher Real News from false News. Thus, this contributes to the spread of false information. Many dangerous fake accounts have been created recently, and these accounts distribute false information via posts, blogs, etc. across social media. Some people spread this false information without being aware of its falsity. In this proposal, we proposed a model to identify the fake news spreading on social media. To accomplish this model, we collected the dataset named “NEWS” from the Kaggle depository. Machine learning algorithms such as Random Forest, Passive Aggressive, and Gradient Boosting were used to Classify Real News and Fake News from News Articles. The passive Aggressive Algorithm gave better accuracy than the other two Algorithms used in this work.","PeriodicalId":221137,"journal":{"name":"2022 International Conference on Connected Systems & Intelligence (CSI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fake News Article classification using Random Forest, Passive Aggressive, and Gradient Boosting\",\"authors\":\"S. T. S., P. Sreeja, Rajeev J Ram\",\"doi\":\"10.1109/CSI54720.2022.9924131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of the exponential expansion of knowledge available on the internet, it is becoming impossible to decipher Real News from false News. Thus, this contributes to the spread of false information. Many dangerous fake accounts have been created recently, and these accounts distribute false information via posts, blogs, etc. across social media. Some people spread this false information without being aware of its falsity. In this proposal, we proposed a model to identify the fake news spreading on social media. To accomplish this model, we collected the dataset named “NEWS” from the Kaggle depository. Machine learning algorithms such as Random Forest, Passive Aggressive, and Gradient Boosting were used to Classify Real News and Fake News from News Articles. The passive Aggressive Algorithm gave better accuracy than the other two Algorithms used in this work.\",\"PeriodicalId\":221137,\"journal\":{\"name\":\"2022 International Conference on Connected Systems & Intelligence (CSI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Connected Systems & Intelligence (CSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSI54720.2022.9924131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Connected Systems & Intelligence (CSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSI54720.2022.9924131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于互联网上可获得的知识呈指数级增长,从假新闻中分辨真实新闻变得越来越不可能。因此,这助长了虚假信息的传播。最近出现了许多危险的假账户,这些账户通过帖子、博客等在社交媒体上传播虚假信息。有些人在不了解虚假信息的情况下传播了这些虚假信息。在这个提案中,我们提出了一个识别社交媒体上传播的假新闻的模型。为了完成这个模型,我们从Kaggle存储库中收集了名为“NEWS”的数据集。使用随机森林、被动攻击和梯度增强等机器学习算法对新闻文章中的真实新闻和假新闻进行分类。被动攻击算法比本研究中使用的其他两种算法具有更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fake News Article classification using Random Forest, Passive Aggressive, and Gradient Boosting
Because of the exponential expansion of knowledge available on the internet, it is becoming impossible to decipher Real News from false News. Thus, this contributes to the spread of false information. Many dangerous fake accounts have been created recently, and these accounts distribute false information via posts, blogs, etc. across social media. Some people spread this false information without being aware of its falsity. In this proposal, we proposed a model to identify the fake news spreading on social media. To accomplish this model, we collected the dataset named “NEWS” from the Kaggle depository. Machine learning algorithms such as Random Forest, Passive Aggressive, and Gradient Boosting were used to Classify Real News and Fake News from News Articles. The passive Aggressive Algorithm gave better accuracy than the other two Algorithms used in this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Object Detection in Microscopic Image of Indian Herbal Plants using YOLOv5 on Jetson Nano Estimation and Interception of a Spiralling Target on Reentry in the Presence of non-Gaussian Measurement Noise COVID-19 Relief Measures assimilating Open Source Intelligence Fake News Article classification using Random Forest, Passive Aggressive, and Gradient Boosting Improved Bi-Channel CNN For Covid-19 Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1