改进的拼接及其扩展到非立体声数据的噪声鲁棒语音识别

D. S. P. Kumar, N. Prasad, Vikas Joshi, S. Umesh
{"title":"改进的拼接及其扩展到非立体声数据的噪声鲁棒语音识别","authors":"D. S. P. Kumar, N. Prasad, Vikas Joshi, S. Umesh","doi":"10.1109/ASRU.2013.6707725","DOIUrl":null,"url":null,"abstract":"In this paper, a modification to the training process of the popular SPLICE algorithm has been proposed for noise robust speech recognition. The modification is based on feature correlations, and enables this stereo-based algorithm to improve the performance in all noise conditions, especially in unseen cases. Further, the modified framework is extended to work for non-stereo datasets where clean and noisy training utterances, but not stereo counterparts, are required. Finally, an MLLR-based computationally efficient run-time noise adaptation method in SPLICE framework has been proposed. The modified SPLICE shows 8.6% absolute improvement over SPLICE in Test C of Aurora-2 database, and 2.93% overall. Non-stereo method shows 10.37% and 6.93% absolute improvements over Aurora-2 and Aurora-4 baseline models respectively. Run-time adaptation shows 9.89% absolute improvement in modified framework as compared to SPLICE for Test C, and 4.96% overall w.r.t. standard MLLR adaptation on HMMs.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modified splice and its extension to non-stereo data for noise robust speech recognition\",\"authors\":\"D. S. P. Kumar, N. Prasad, Vikas Joshi, S. Umesh\",\"doi\":\"10.1109/ASRU.2013.6707725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a modification to the training process of the popular SPLICE algorithm has been proposed for noise robust speech recognition. The modification is based on feature correlations, and enables this stereo-based algorithm to improve the performance in all noise conditions, especially in unseen cases. Further, the modified framework is extended to work for non-stereo datasets where clean and noisy training utterances, but not stereo counterparts, are required. Finally, an MLLR-based computationally efficient run-time noise adaptation method in SPLICE framework has been proposed. The modified SPLICE shows 8.6% absolute improvement over SPLICE in Test C of Aurora-2 database, and 2.93% overall. Non-stereo method shows 10.37% and 6.93% absolute improvements over Aurora-2 and Aurora-4 baseline models respectively. Run-time adaptation shows 9.89% absolute improvement in modified framework as compared to SPLICE for Test C, and 4.96% overall w.r.t. standard MLLR adaptation on HMMs.\",\"PeriodicalId\":265258,\"journal\":{\"name\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2013.6707725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对流行的SPLICE算法的训练过程进行了改进,用于噪声鲁棒语音识别。这种改进是基于特征相关性的,使这种基于立体的算法能够提高在所有噪声条件下的性能,特别是在看不见的情况下。此外,改进的框架被扩展到非立体数据集,其中需要干净和嘈杂的训练话语,但不需要立体对口。最后,在SPLICE框架下提出了一种基于mllr的高效运行时噪声自适应方法。改进后的SPLICE在Aurora-2数据库的C测试中比SPLICE的绝对性能提高了8.6%,总体性能提高了2.93%。与Aurora-2和Aurora-4基线模型相比,非立体方法的绝对改进率分别为10.37%和6.93%。与SPLICE测试C相比,修改后的框架的运行时适应性提高了9.89%,在hmm上的w.r.t.标准MLLR适应性提高了4.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modified splice and its extension to non-stereo data for noise robust speech recognition
In this paper, a modification to the training process of the popular SPLICE algorithm has been proposed for noise robust speech recognition. The modification is based on feature correlations, and enables this stereo-based algorithm to improve the performance in all noise conditions, especially in unseen cases. Further, the modified framework is extended to work for non-stereo datasets where clean and noisy training utterances, but not stereo counterparts, are required. Finally, an MLLR-based computationally efficient run-time noise adaptation method in SPLICE framework has been proposed. The modified SPLICE shows 8.6% absolute improvement over SPLICE in Test C of Aurora-2 database, and 2.93% overall. Non-stereo method shows 10.37% and 6.93% absolute improvements over Aurora-2 and Aurora-4 baseline models respectively. Run-time adaptation shows 9.89% absolute improvement in modified framework as compared to SPLICE for Test C, and 4.96% overall w.r.t. standard MLLR adaptation on HMMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning filter banks within a deep neural network framework Efficient nearly error-less LVCSR decoding based on incremental forward and backward passes Porting concepts from DNNs back to GMMs Discriminative piecewise linear transformation based on deep learning for noise robust automatic speech recognition Acoustic modeling using transform-based phone-cluster adaptive training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1