多目标并行语义分割及后验操作的广义框架

Adrian Llopart, Ole Ravn, N. Andersen, Jong-Hwan Kim
{"title":"多目标并行语义分割及后验操作的广义框架","authors":"Adrian Llopart, Ole Ravn, N. Andersen, Jong-Hwan Kim","doi":"10.1109/ROBIO.2017.8324476","DOIUrl":null,"url":null,"abstract":"The end-to-end approach presented in this paper deals with the recognition, detection, segmentation and grasping of objects, assuming no prior knowledge of the environment nor objects. The proposed pipeline is as follows: 1) Usage of a trained Convolutional Neural Net (CNN) that recognizes up to 80 different classes of objects in real time and generates bounding boxes around them. 2) An algorithm to derive in parallel the pointclouds of said regions of interest (ROI). 3) Eight different segmentation methods to remove background data and noise from the pointclouds and obtain a precise result of the semantically segmented objects. 4) Registration of the object's pointclouds over time to generate the best possible model. 5) Utilization of an algorithm to detect an array of grasping positions and orientations based mainly on the geometry of the object's model. 6) Implementation of the system on the humanoid robot MyBot, developed in the RIT Lab at KAIST. 7) An algorithm to find the bounding box of the object's model in 3D to then create a collision object and add it to the octomap. The collision checking between robot's hand and the object is removed to allow grasping using the MoveIt libraries. 8) Selection of the best grasping pose for a certain object, plus execution of the grasping movement. 9) Retrieval of the object and moving it to a desired final position.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generalized framework for the parallel semantic segmentation of multiple objects and posterior manipulation\",\"authors\":\"Adrian Llopart, Ole Ravn, N. Andersen, Jong-Hwan Kim\",\"doi\":\"10.1109/ROBIO.2017.8324476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The end-to-end approach presented in this paper deals with the recognition, detection, segmentation and grasping of objects, assuming no prior knowledge of the environment nor objects. The proposed pipeline is as follows: 1) Usage of a trained Convolutional Neural Net (CNN) that recognizes up to 80 different classes of objects in real time and generates bounding boxes around them. 2) An algorithm to derive in parallel the pointclouds of said regions of interest (ROI). 3) Eight different segmentation methods to remove background data and noise from the pointclouds and obtain a precise result of the semantically segmented objects. 4) Registration of the object's pointclouds over time to generate the best possible model. 5) Utilization of an algorithm to detect an array of grasping positions and orientations based mainly on the geometry of the object's model. 6) Implementation of the system on the humanoid robot MyBot, developed in the RIT Lab at KAIST. 7) An algorithm to find the bounding box of the object's model in 3D to then create a collision object and add it to the octomap. The collision checking between robot's hand and the object is removed to allow grasping using the MoveIt libraries. 8) Selection of the best grasping pose for a certain object, plus execution of the grasping movement. 9) Retrieval of the object and moving it to a desired final position.\",\"PeriodicalId\":197159,\"journal\":{\"name\":\"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2017.8324476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出的端到端方法处理对象的识别、检测、分割和抓取,不假设环境和对象的先验知识。提议的管道如下:1)使用经过训练的卷积神经网络(CNN),该网络可以实时识别多达80种不同类别的物体,并在它们周围生成边界框。2)并行导出感兴趣区域(ROI)点云的算法。3)采用8种不同的分割方法去除点云中的背景数据和噪声,得到精确的目标语义分割结果。4)随着时间的推移,对物体的点云进行注册,以生成最佳模型。5)利用一种算法,主要基于物体模型的几何形状来检测一组抓取位置和方向。6)在KAIST RIT实验室开发的仿人机器人MyBot上实现该系统。7)一种算法,在3D中找到物体模型的边界框,然后创建一个碰撞物体并将其添加到octomap中。机器人的手和物体之间的碰撞检查被删除,以允许使用MoveIt库抓取。8)选择某物体的最佳抓取姿势,并执行抓取动作。9)检索对象并将其移动到所需的最终位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized framework for the parallel semantic segmentation of multiple objects and posterior manipulation
The end-to-end approach presented in this paper deals with the recognition, detection, segmentation and grasping of objects, assuming no prior knowledge of the environment nor objects. The proposed pipeline is as follows: 1) Usage of a trained Convolutional Neural Net (CNN) that recognizes up to 80 different classes of objects in real time and generates bounding boxes around them. 2) An algorithm to derive in parallel the pointclouds of said regions of interest (ROI). 3) Eight different segmentation methods to remove background data and noise from the pointclouds and obtain a precise result of the semantically segmented objects. 4) Registration of the object's pointclouds over time to generate the best possible model. 5) Utilization of an algorithm to detect an array of grasping positions and orientations based mainly on the geometry of the object's model. 6) Implementation of the system on the humanoid robot MyBot, developed in the RIT Lab at KAIST. 7) An algorithm to find the bounding box of the object's model in 3D to then create a collision object and add it to the octomap. The collision checking between robot's hand and the object is removed to allow grasping using the MoveIt libraries. 8) Selection of the best grasping pose for a certain object, plus execution of the grasping movement. 9) Retrieval of the object and moving it to a desired final position.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Respiratory simulator for robotic respiratory tract treatments Mimicking fly motion tracking and fixation behaviors with a hybrid visual neural network A smooth position-force controller for asbestos removal manipulator A robotized interior work process planning algorithm based on surface minimum coverage set Towards adaptive power consumption estimation for over-actuated unmanned vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1