基于混合模型的汉语语用分词方法

Wei Jiang, Yi Guan, Xiaolong Wang
{"title":"基于混合模型的汉语语用分词方法","authors":"Wei Jiang, Yi Guan, Xiaolong Wang","doi":"10.30019/IJCLCLP.200612.0005","DOIUrl":null,"url":null,"abstract":"A pragmatic Chinese word segmentation approach is presented in this paper based on mixing language models. Chinese word segmentation is composed of several hard sub-tasks, which usually encounter different difficulties. The authors apply the corresponding language model to solve each special sub-task, so as to take advantage of each model. First, a class-based trigram is adopted in basic word segmentation, which applies the Absolute Discount Smoothing algorithm to overcome data sparseness. The Maximum Entropy Model (ME) is also used to identify Named Entities. Second, the authors propose the application of rough sets and average mutual information, etc. to extract special features. Finally, some features are extended through the combination of the word cluster and the thesaurus. The authors' system participated in the Second International Chinese Word Segmentation Bakeoff, and achieved 96.7 and 97.2 in F-measure in the PKU and MSRA open tests, respectively.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Pragmatic Chinese Word Segmentation Approach Based on Mixing Models\",\"authors\":\"Wei Jiang, Yi Guan, Xiaolong Wang\",\"doi\":\"10.30019/IJCLCLP.200612.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pragmatic Chinese word segmentation approach is presented in this paper based on mixing language models. Chinese word segmentation is composed of several hard sub-tasks, which usually encounter different difficulties. The authors apply the corresponding language model to solve each special sub-task, so as to take advantage of each model. First, a class-based trigram is adopted in basic word segmentation, which applies the Absolute Discount Smoothing algorithm to overcome data sparseness. The Maximum Entropy Model (ME) is also used to identify Named Entities. Second, the authors propose the application of rough sets and average mutual information, etc. to extract special features. Finally, some features are extended through the combination of the word cluster and the thesaurus. The authors' system participated in the Second International Chinese Word Segmentation Bakeoff, and achieved 96.7 and 97.2 in F-measure in the PKU and MSRA open tests, respectively.\",\"PeriodicalId\":436300,\"journal\":{\"name\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30019/IJCLCLP.200612.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.200612.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种基于混合语言模型的汉语语用分词方法。汉语分词是由几个困难的子任务组成的,这些子任务通常会遇到不同的困难。作者采用相应的语言模型来解决每个特定的子任务,从而充分利用每个模型的优势。首先,在基本分词中采用基于类的三分图,利用绝对折扣平滑算法克服数据稀疏性;最大熵模型(ME)也用于识别命名实体。其次,提出了应用粗糙集和平均互信息等方法提取特殊特征的方法。最后,通过词类和同义词库的结合,扩展了一些特征。该系统参加了第二届国际汉语分词大赛,在PKU和MSRA开放测试中分别获得了96.7和97.2的F-measure。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Pragmatic Chinese Word Segmentation Approach Based on Mixing Models
A pragmatic Chinese word segmentation approach is presented in this paper based on mixing language models. Chinese word segmentation is composed of several hard sub-tasks, which usually encounter different difficulties. The authors apply the corresponding language model to solve each special sub-task, so as to take advantage of each model. First, a class-based trigram is adopted in basic word segmentation, which applies the Absolute Discount Smoothing algorithm to overcome data sparseness. The Maximum Entropy Model (ME) is also used to identify Named Entities. Second, the authors propose the application of rough sets and average mutual information, etc. to extract special features. Finally, some features are extended through the combination of the word cluster and the thesaurus. The authors' system participated in the Second International Chinese Word Segmentation Bakeoff, and achieved 96.7 and 97.2 in F-measure in the PKU and MSRA open tests, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Cold Start Personalized Language Model Using Social Network Information Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars TQDL: Integrated Models for Cross-Language Document Retrieval Evaluation of TTS Systems in Intelligibility and Comprehension Tasks: a Case Study of HTS-2008 and Multisyn Synthesizers Effects of Combining Bilingual and Collocational Information on Translation of English and Chinese Verb-Noun Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1