基于创新杂交技术的医学图像分割与分类技术研究

Rajesh Sharma R, Akey Sungheetha
{"title":"基于创新杂交技术的医学图像分割与分类技术研究","authors":"Rajesh Sharma R, Akey Sungheetha","doi":"10.1109/ISCO.2017.7855979","DOIUrl":null,"url":null,"abstract":"Over the years, the growth in medical image processing is increasing in a tremendous manner. The rate of increasing diseases with respect to various types of cancer and other related human problems paves the way for the development in biomedical research. Thus processing and analyzing these medical images is of high importance for clinical diagnosis. This work focuses on performing effective classification of brain tumor images and segmentation of live disease images employing the proposed hybrid intelligent techniques. The challenges and objectives on design of feature extraction, image classification and segmentation for medical images are discussed.","PeriodicalId":321113,"journal":{"name":"2017 11th International Conference on Intelligent Systems and Control (ISCO)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Segmentation and classification techniques of medical images using innovated hybridized techniques — a study\",\"authors\":\"Rajesh Sharma R, Akey Sungheetha\",\"doi\":\"10.1109/ISCO.2017.7855979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the years, the growth in medical image processing is increasing in a tremendous manner. The rate of increasing diseases with respect to various types of cancer and other related human problems paves the way for the development in biomedical research. Thus processing and analyzing these medical images is of high importance for clinical diagnosis. This work focuses on performing effective classification of brain tumor images and segmentation of live disease images employing the proposed hybrid intelligent techniques. The challenges and objectives on design of feature extraction, image classification and segmentation for medical images are discussed.\",\"PeriodicalId\":321113,\"journal\":{\"name\":\"2017 11th International Conference on Intelligent Systems and Control (ISCO)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 11th International Conference on Intelligent Systems and Control (ISCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCO.2017.7855979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 11th International Conference on Intelligent Systems and Control (ISCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCO.2017.7855979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

多年来,医学图像处理的增长正在以惊人的方式增长。各类癌症和其他相关人类问题的发病率不断上升,为生物医学研究的发展铺平了道路。因此,对这些医学图像进行处理和分析对临床诊断具有重要意义。这项工作的重点是使用所提出的混合智能技术对脑肿瘤图像进行有效的分类和实时疾病图像的分割。讨论了医学图像的特征提取、图像分类和分割设计面临的挑战和目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmentation and classification techniques of medical images using innovated hybridized techniques — a study
Over the years, the growth in medical image processing is increasing in a tremendous manner. The rate of increasing diseases with respect to various types of cancer and other related human problems paves the way for the development in biomedical research. Thus processing and analyzing these medical images is of high importance for clinical diagnosis. This work focuses on performing effective classification of brain tumor images and segmentation of live disease images employing the proposed hybrid intelligent techniques. The challenges and objectives on design of feature extraction, image classification and segmentation for medical images are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing of FOPID controller for heating furnace using different optimization techniques An advance system for emergency vehicles: Based on M2M communication Medical distress prediction based on Classification Rule Discovery using ant-miner algorithm Modelling, simulation & comparison of BLDC motor and induction motor based condenser in a chiller cooler system using CFD Process parameter effects in the friction surfacing of MONEL over mild steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1