行人相似度提取提高计数准确率

Xu Yang, J. Gaspar, W. Ke, C. Lam, Yanwei Zheng, W. Lou, Yapeng Wang
{"title":"行人相似度提取提高计数准确率","authors":"Xu Yang, J. Gaspar, W. Ke, C. Lam, Yanwei Zheng, W. Lou, Yapeng Wang","doi":"10.5220/0007381605480555","DOIUrl":null,"url":null,"abstract":"Current state-of-the-art single shot object detection pipelines, composed by an object detector such as Yolo, generate multiple detections for each object, requiring a post-processing Non-Maxima Suppression (NMS) algorithm to remove redundant detections. However, this pipeline struggles to achieve high accuracy, particularly in object counting applications, due to a trade-off between precision and recall rates. A higher NMS threshold results in fewer detections suppressed and, consequently, in a higher recall rate, as well as lower precision and accuracy. In this paper, we have explored a new pedestrian detection pipeline which is more flexible, able to adapt to different scenarios and with improved precision and accuracy. A higher NMS threshold is used to retain all true detections and achieve a high recall rate for different scenarios, and a Pedestrian Similarity Extraction (PSE) algorithm is used to remove redundant detentions, consequently improving counting accuracy. The PSE algorithm significantly reduces the detection accuracy volatility and its dependency on NMS thresholds, improving the mean detection accuracy for different input datasets.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pedestrian Similarity Extraction to Improve People Counting Accuracy\",\"authors\":\"Xu Yang, J. Gaspar, W. Ke, C. Lam, Yanwei Zheng, W. Lou, Yapeng Wang\",\"doi\":\"10.5220/0007381605480555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current state-of-the-art single shot object detection pipelines, composed by an object detector such as Yolo, generate multiple detections for each object, requiring a post-processing Non-Maxima Suppression (NMS) algorithm to remove redundant detections. However, this pipeline struggles to achieve high accuracy, particularly in object counting applications, due to a trade-off between precision and recall rates. A higher NMS threshold results in fewer detections suppressed and, consequently, in a higher recall rate, as well as lower precision and accuracy. In this paper, we have explored a new pedestrian detection pipeline which is more flexible, able to adapt to different scenarios and with improved precision and accuracy. A higher NMS threshold is used to retain all true detections and achieve a high recall rate for different scenarios, and a Pedestrian Similarity Extraction (PSE) algorithm is used to remove redundant detentions, consequently improving counting accuracy. The PSE algorithm significantly reduces the detection accuracy volatility and its dependency on NMS thresholds, improving the mean detection accuracy for different input datasets.\",\"PeriodicalId\":410036,\"journal\":{\"name\":\"International Conference on Pattern Recognition Applications and Methods\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007381605480555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007381605480555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前最先进的单镜头目标检测管道由Yolo等目标检测器组成,为每个目标生成多个检测,需要后处理非最大抑制(NMS)算法来去除冗余检测。然而,由于精确度和召回率之间的权衡,这种管道难以达到高精度,特别是在对象计数应用中。更高的NMS阈值会导致更少的检测被抑制,从而导致更高的召回率,以及更低的精度和准确性。在本文中,我们探索了一种新的行人检测管道,该管道更加灵活,能够适应不同的场景,并且提高了精度和准确性。使用更高的NMS阈值来保留所有真实检测并实现不同场景的高召回率,并使用行人相似度提取(PSE)算法来去除冗余滞留,从而提高计数精度。PSE算法显著降低了检测精度的波动性及其对NMS阈值的依赖,提高了不同输入数据集的平均检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pedestrian Similarity Extraction to Improve People Counting Accuracy
Current state-of-the-art single shot object detection pipelines, composed by an object detector such as Yolo, generate multiple detections for each object, requiring a post-processing Non-Maxima Suppression (NMS) algorithm to remove redundant detections. However, this pipeline struggles to achieve high accuracy, particularly in object counting applications, due to a trade-off between precision and recall rates. A higher NMS threshold results in fewer detections suppressed and, consequently, in a higher recall rate, as well as lower precision and accuracy. In this paper, we have explored a new pedestrian detection pipeline which is more flexible, able to adapt to different scenarios and with improved precision and accuracy. A higher NMS threshold is used to retain all true detections and achieve a high recall rate for different scenarios, and a Pedestrian Similarity Extraction (PSE) algorithm is used to remove redundant detentions, consequently improving counting accuracy. The PSE algorithm significantly reduces the detection accuracy volatility and its dependency on NMS thresholds, improving the mean detection accuracy for different input datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm On Spectrogram Analysis in a Multiple Classifier Fusion Framework for Power Grid Classification Using Electric Network Frequency Semantic Properties of cosine based bias scores for word embeddings Double Trouble? Impact and Detection of Duplicates in Face Image Datasets Detecting Brain Tumors through Multimodal Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1