H. Najdenski, L. Dimitrova, Veselin Akivanov, V. Hubenov, Snejanka Mihailova, P. Grozdanov, M. Iliev, V. Kussovski, L. Kabaivanova, I. Simeonov
{"title":"麦秸厌氧消化及其消化产物的微生物学评价","authors":"H. Najdenski, L. Dimitrova, Veselin Akivanov, V. Hubenov, Snejanka Mihailova, P. Grozdanov, M. Iliev, V. Kussovski, L. Kabaivanova, I. Simeonov","doi":"10.32006/eeep.2021.1.4960","DOIUrl":null,"url":null,"abstract":"A study on the anaerobic digestion of wheat straw in a pilot scale bioreactor with an organic load of 2, 5, 7, 10 and 20 g/l and a process duration of 18 to 80 days was performed. The pilot bioreactor used has a computerized system for control and monitoring of various operational parameters – temperature, pH, biogas composition, etc. Total solids, total organics and volatile fatty acids were measured by standard methods and gas chromatography. Daily biogas yield and its main components (CH4, CO2, H2S) were analysed too. During the anaerobic digestion, different species of microorganisms have been isolated from the genera Bacillus, Pseudomonas, Enterococcus and Aeromonas, as well as the species Terribacillus halophilus. With a known pathogenic potential are described Pseudomonas sp., Enterococcus sp. and Aeromonas sp. Studies on the antimicrobial resistance of all isolated strains show resistance to ampicillin, amoxicillin, bacitracin, ceftriaxone, gentamicin and vancomycin. The cellulose degrading activity of some of the bacterial isolates, their pathogenic potential and antimicrobial resistance are discussed in detail in the light of the data on the mechanisms of proven resistance.","PeriodicalId":369361,"journal":{"name":"Ecological Engineering and Environment Protection","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ANAEROBIC DIGESTION OF WHEAT STRAW AND MICOBIOLOGICAL ASSESMENT OF THE RESULTED DIGESTATE\",\"authors\":\"H. Najdenski, L. Dimitrova, Veselin Akivanov, V. Hubenov, Snejanka Mihailova, P. Grozdanov, M. Iliev, V. Kussovski, L. Kabaivanova, I. Simeonov\",\"doi\":\"10.32006/eeep.2021.1.4960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study on the anaerobic digestion of wheat straw in a pilot scale bioreactor with an organic load of 2, 5, 7, 10 and 20 g/l and a process duration of 18 to 80 days was performed. The pilot bioreactor used has a computerized system for control and monitoring of various operational parameters – temperature, pH, biogas composition, etc. Total solids, total organics and volatile fatty acids were measured by standard methods and gas chromatography. Daily biogas yield and its main components (CH4, CO2, H2S) were analysed too. During the anaerobic digestion, different species of microorganisms have been isolated from the genera Bacillus, Pseudomonas, Enterococcus and Aeromonas, as well as the species Terribacillus halophilus. With a known pathogenic potential are described Pseudomonas sp., Enterococcus sp. and Aeromonas sp. Studies on the antimicrobial resistance of all isolated strains show resistance to ampicillin, amoxicillin, bacitracin, ceftriaxone, gentamicin and vancomycin. The cellulose degrading activity of some of the bacterial isolates, their pathogenic potential and antimicrobial resistance are discussed in detail in the light of the data on the mechanisms of proven resistance.\",\"PeriodicalId\":369361,\"journal\":{\"name\":\"Ecological Engineering and Environment Protection\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering and Environment Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32006/eeep.2021.1.4960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering and Environment Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32006/eeep.2021.1.4960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ANAEROBIC DIGESTION OF WHEAT STRAW AND MICOBIOLOGICAL ASSESMENT OF THE RESULTED DIGESTATE
A study on the anaerobic digestion of wheat straw in a pilot scale bioreactor with an organic load of 2, 5, 7, 10 and 20 g/l and a process duration of 18 to 80 days was performed. The pilot bioreactor used has a computerized system for control and monitoring of various operational parameters – temperature, pH, biogas composition, etc. Total solids, total organics and volatile fatty acids were measured by standard methods and gas chromatography. Daily biogas yield and its main components (CH4, CO2, H2S) were analysed too. During the anaerobic digestion, different species of microorganisms have been isolated from the genera Bacillus, Pseudomonas, Enterococcus and Aeromonas, as well as the species Terribacillus halophilus. With a known pathogenic potential are described Pseudomonas sp., Enterococcus sp. and Aeromonas sp. Studies on the antimicrobial resistance of all isolated strains show resistance to ampicillin, amoxicillin, bacitracin, ceftriaxone, gentamicin and vancomycin. The cellulose degrading activity of some of the bacterial isolates, their pathogenic potential and antimicrobial resistance are discussed in detail in the light of the data on the mechanisms of proven resistance.