可变形裂缝性储层深层工业盐水井、油气井施工的创新解决方案

A. Vakhromeev, S. Sverkunov, R. Akchurin, V. M. Ivanishin, V. Ruzhich, I. Tashkevich, M. A. Lisitsyn
{"title":"可变形裂缝性储层深层工业盐水井、油气井施工的创新解决方案","authors":"A. Vakhromeev, S. Sverkunov, R. Akchurin, V. M. Ivanishin, V. Ruzhich, I. Tashkevich, M. A. Lisitsyn","doi":"10.21285/2686-9993-2021-44-2-125-133","DOIUrl":null,"url":null,"abstract":"The paper deals with the methodological features of drilling and completion of wells in the fractured natural reservoirs containing oil and gas accumulations with different reservoir pressures of fluid-pressure systems from abnormally high to abnormally low. The authors had studied the fluid-pressure systems of industrial lithium-bromine brines, oil and gas fields and accumulations in the south of the Siberian platform for the period from 1983 to 2019. The article summarizes the main results, including new technical solutions protected by the Russian Federation patents. The authors proposed and patented a series of new technical solutions for the immediate consolidation of natural permeable fractures during the primary opening of the reservoir by drilling, as applied to a fractured reservoir. The main task of the study is to preserve the permeability of the fractured system in the bottomhole formation zone under the action of compressive stresses (rock mass) that increase with the formation of a drawdown cone, primarily in the bottomhole formation zone with the increase in the drawdown (ΔP) above critical values. Such an area is the bottomhole formation zone within a radius of the first meters around the well that penetrated the fractured reservoir. Practice has proved that the use of innovative solutions through the advanced consolidation of permeable fractures in the bottomhole formation zone (of fluid-producing oil- and gas-bearing, water-bearing reservoir) in the open (initial natural) state ensures the preservation of natural permeability of natural filtering fractures of the reservoir with the fluid system reservoir pressure from anomalously low to abnormally high. The solution ensures constant permeability of the fractured filtration system throughout the cleaning cycles of the bottomhole formation zone rocks from drilling mud, obtaining of the true calculated hydrodynamic parameters based on the results of well testing in the modes of the “steady-state production method” and well flow rate (productivity) stabilization under further well operation.","PeriodicalId":128080,"journal":{"name":"Earth sciences and subsoil use","volume":"329 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative solutions in construction of deep industrial brine, oil and gas wells in deformable fractured reservoirs\",\"authors\":\"A. Vakhromeev, S. Sverkunov, R. Akchurin, V. M. Ivanishin, V. Ruzhich, I. Tashkevich, M. A. Lisitsyn\",\"doi\":\"10.21285/2686-9993-2021-44-2-125-133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the methodological features of drilling and completion of wells in the fractured natural reservoirs containing oil and gas accumulations with different reservoir pressures of fluid-pressure systems from abnormally high to abnormally low. The authors had studied the fluid-pressure systems of industrial lithium-bromine brines, oil and gas fields and accumulations in the south of the Siberian platform for the period from 1983 to 2019. The article summarizes the main results, including new technical solutions protected by the Russian Federation patents. The authors proposed and patented a series of new technical solutions for the immediate consolidation of natural permeable fractures during the primary opening of the reservoir by drilling, as applied to a fractured reservoir. The main task of the study is to preserve the permeability of the fractured system in the bottomhole formation zone under the action of compressive stresses (rock mass) that increase with the formation of a drawdown cone, primarily in the bottomhole formation zone with the increase in the drawdown (ΔP) above critical values. Such an area is the bottomhole formation zone within a radius of the first meters around the well that penetrated the fractured reservoir. Practice has proved that the use of innovative solutions through the advanced consolidation of permeable fractures in the bottomhole formation zone (of fluid-producing oil- and gas-bearing, water-bearing reservoir) in the open (initial natural) state ensures the preservation of natural permeability of natural filtering fractures of the reservoir with the fluid system reservoir pressure from anomalously low to abnormally high. The solution ensures constant permeability of the fractured filtration system throughout the cleaning cycles of the bottomhole formation zone rocks from drilling mud, obtaining of the true calculated hydrodynamic parameters based on the results of well testing in the modes of the “steady-state production method” and well flow rate (productivity) stabilization under further well operation.\",\"PeriodicalId\":128080,\"journal\":{\"name\":\"Earth sciences and subsoil use\",\"volume\":\"329 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth sciences and subsoil use\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21285/2686-9993-2021-44-2-125-133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth sciences and subsoil use","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21285/2686-9993-2021-44-2-125-133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文论述了不同流体压力系统的储层压力从异常高到异常低的裂缝性含油气油藏的钻完井方法特点。作者在1983年至2019年期间研究了西伯利亚平台南部工业锂-溴卤水,油气田和聚集的流体压力系统。文章总结了主要成果,包括受俄罗斯联邦专利保护的新技术解决方案。作者提出并申请了一系列新的技术解决方案,用于裂缝性油藏在油藏初开期间通过钻井对天然渗透性裂缝进行即时固结。该研究的主要任务是在压应力(岩体)的作用下,在井底地层区域内保持裂缝系统的渗透率,压应力(岩体)随着压降锥的形成而增加,特别是在井底地层区域,压降(ΔP)大于临界值。该区域是指在裂缝性储层井周围半径为1米的井底地层区。实践证明,在流体系统储层压力由异常低到异常高的情况下,采用创新的解决方案,在井底地层带(产液含油气、含水储层)处于开放(初始自然)状态时,通过对渗透性裂缝进行超前固结,保证了储层天然过滤裂缝的天然渗透率。该解决方案确保了压裂过滤系统在井底地层地层泥浆清洗周期内的渗透率恒定,并根据“稳态生产法”模式下的试井结果获得了真实的计算水动力参数,并在后续井作业中稳定了井流量(产能)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovative solutions in construction of deep industrial brine, oil and gas wells in deformable fractured reservoirs
The paper deals with the methodological features of drilling and completion of wells in the fractured natural reservoirs containing oil and gas accumulations with different reservoir pressures of fluid-pressure systems from abnormally high to abnormally low. The authors had studied the fluid-pressure systems of industrial lithium-bromine brines, oil and gas fields and accumulations in the south of the Siberian platform for the period from 1983 to 2019. The article summarizes the main results, including new technical solutions protected by the Russian Federation patents. The authors proposed and patented a series of new technical solutions for the immediate consolidation of natural permeable fractures during the primary opening of the reservoir by drilling, as applied to a fractured reservoir. The main task of the study is to preserve the permeability of the fractured system in the bottomhole formation zone under the action of compressive stresses (rock mass) that increase with the formation of a drawdown cone, primarily in the bottomhole formation zone with the increase in the drawdown (ΔP) above critical values. Such an area is the bottomhole formation zone within a radius of the first meters around the well that penetrated the fractured reservoir. Practice has proved that the use of innovative solutions through the advanced consolidation of permeable fractures in the bottomhole formation zone (of fluid-producing oil- and gas-bearing, water-bearing reservoir) in the open (initial natural) state ensures the preservation of natural permeability of natural filtering fractures of the reservoir with the fluid system reservoir pressure from anomalously low to abnormally high. The solution ensures constant permeability of the fractured filtration system throughout the cleaning cycles of the bottomhole formation zone rocks from drilling mud, obtaining of the true calculated hydrodynamic parameters based on the results of well testing in the modes of the “steady-state production method” and well flow rate (productivity) stabilization under further well operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role and significance of geological heterogeneity in the formation of limestone productivity in the Famennian stage of the South Tatar arch Petroelastic modeling of Vereiskian and Bashkirian deposits on example of an oil field in the Republic of Tatarstan Influence of heterogeneity indicators on productivity index prediction efficiency (on example of carbonate reservoir deposits in the Ural-Volga region) Petrophysical taxa of diamond deposit of Komsomolskaya kimberlite pipe (Yakutsk diamondiferous province) Using photogrammetry to determine quarry slope stability coefficient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1