利用社区检测空间网络:POSTER

Krista Rizman Žalik, B. Žalik
{"title":"利用社区检测空间网络:POSTER","authors":"Krista Rizman Žalik, B. Žalik","doi":"10.1145/3310273.3323429","DOIUrl":null,"url":null,"abstract":"This paper describes the use of graph analysis for spatial networks. The use of community detection algorithms for detecting communities- groups of similar objects within networks of land cover objects to determine the land use is evaluated. Land cover to land use transformation requires some knowledge to merge land cover objects. Community detection algorithms merge objects of the formed spatial network into communities. Community detection algorithms are efficient analysis tool for spatial graphs and can identify land use communities but with different characteristics, although spatial networks with topological relationships between objects can cause some problems.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"348 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using community detection for spatial networks: POSTER\",\"authors\":\"Krista Rizman Žalik, B. Žalik\",\"doi\":\"10.1145/3310273.3323429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the use of graph analysis for spatial networks. The use of community detection algorithms for detecting communities- groups of similar objects within networks of land cover objects to determine the land use is evaluated. Land cover to land use transformation requires some knowledge to merge land cover objects. Community detection algorithms merge objects of the formed spatial network into communities. Community detection algorithms are efficient analysis tool for spatial graphs and can identify land use communities but with different characteristics, although spatial networks with topological relationships between objects can cause some problems.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"348 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3323429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3323429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了图分析在空间网络中的应用。使用社区检测算法来检测社区-在土地覆盖对象网络中相似对象的群体以确定土地利用进行了评估。土地覆盖到土地利用的转换需要一些知识来合并土地覆盖对象。社区检测算法将形成的空间网络中的对象合并为社区。群落检测算法是空间图的有效分析工具,可以识别出具有不同特征的土地利用群落,但具有拓扑关系的空间网络会产生一些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using community detection for spatial networks: POSTER
This paper describes the use of graph analysis for spatial networks. The use of community detection algorithms for detecting communities- groups of similar objects within networks of land cover objects to determine the land use is evaluated. Land cover to land use transformation requires some knowledge to merge land cover objects. Community detection algorithms merge objects of the formed spatial network into communities. Community detection algorithms are efficient analysis tool for spatial graphs and can identify land use communities but with different characteristics, although spatial networks with topological relationships between objects can cause some problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending classical processors to support future large scale quantum accelerators Analysing the tor web with high performance graph algorithms The FitOptiVis ECSEL project: highly efficient distributed embedded image/video processing in cyber-physical systems The german informatics society's new ethical guidelines: POSTER Go green radio astronomy: Approximate Computing Perspective: Opportunities and Challenges: POSTER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1