贝叶斯文本分类中的分类降维

Richard A. McAllister, John W. Sheppard
{"title":"贝叶斯文本分类中的分类降维","authors":"Richard A. McAllister, John W. Sheppard","doi":"10.1109/ICMLA.2012.93","DOIUrl":null,"url":null,"abstract":"Lexical abstraction hierarchies can be leveraged to provide semantic information that characterizes features of text corpora as a whole. This information may be used to determine the classification utility of the dimensions that describe a dataset. This paper presents a new method for preparing a dataset for probabilistic classification by determining, a priori, the utility of a very small subset of taxonomically-related dimensions via a Discriminative Multinomial Naive Bayes process. We show that this method yields significant improvements over both Discriminative Multinomial Naive Bayes and Bayesian network classifiers alone.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taxonomic Dimensionality Reduction in Bayesian Text Classification\",\"authors\":\"Richard A. McAllister, John W. Sheppard\",\"doi\":\"10.1109/ICMLA.2012.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lexical abstraction hierarchies can be leveraged to provide semantic information that characterizes features of text corpora as a whole. This information may be used to determine the classification utility of the dimensions that describe a dataset. This paper presents a new method for preparing a dataset for probabilistic classification by determining, a priori, the utility of a very small subset of taxonomically-related dimensions via a Discriminative Multinomial Naive Bayes process. We show that this method yields significant improvements over both Discriminative Multinomial Naive Bayes and Bayesian network classifiers alone.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可以利用词汇抽象层次结构来提供语义信息,这些信息将文本语料库的特征作为一个整体来描述。此信息可用于确定描述数据集的维度的分类效用。本文提出了一种通过判别多项式朴素贝叶斯过程先验地确定分类相关维度的极小子集的效用来准备用于概率分类的数据集的新方法。我们证明这种方法比单独的判别多项式朴素贝叶斯和贝叶斯网络分类器都有显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Taxonomic Dimensionality Reduction in Bayesian Text Classification
Lexical abstraction hierarchies can be leveraged to provide semantic information that characterizes features of text corpora as a whole. This information may be used to determine the classification utility of the dimensions that describe a dataset. This paper presents a new method for preparing a dataset for probabilistic classification by determining, a priori, the utility of a very small subset of taxonomically-related dimensions via a Discriminative Multinomial Naive Bayes process. We show that this method yields significant improvements over both Discriminative Multinomial Naive Bayes and Bayesian network classifiers alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1