基于感知减法和压缩感知的物联网目标跟踪

X. Lu, Liangyan Cheng
{"title":"基于感知减法和压缩感知的物联网目标跟踪","authors":"X. Lu, Liangyan Cheng","doi":"10.1109/ICCWAMTIP.2014.7073388","DOIUrl":null,"url":null,"abstract":"A target tracking algorithm based on compressed sensing and sensing subtraction was proposed in this paper. We presented the concept of sensing subtraction, combined sensing subtraction and compressed sensing, sparsely sampled the distributed sensing information in Internet of Things (IoT), and reconstructed sensing subtraction matrix by compressed sensing theory, and then located and tracked moving target by sensing subtraction method. Simulation results show that the proposed algorithm recovers sensing data well, and the sparse sampling strategy reduces network communication traffic and improves the energy-efficiency of system.","PeriodicalId":211273,"journal":{"name":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Target tracking in internet of things based on sensing subtraction and compressed sensing\",\"authors\":\"X. Lu, Liangyan Cheng\",\"doi\":\"10.1109/ICCWAMTIP.2014.7073388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A target tracking algorithm based on compressed sensing and sensing subtraction was proposed in this paper. We presented the concept of sensing subtraction, combined sensing subtraction and compressed sensing, sparsely sampled the distributed sensing information in Internet of Things (IoT), and reconstructed sensing subtraction matrix by compressed sensing theory, and then located and tracked moving target by sensing subtraction method. Simulation results show that the proposed algorithm recovers sensing data well, and the sparse sampling strategy reduces network communication traffic and improves the energy-efficiency of system.\",\"PeriodicalId\":211273,\"journal\":{\"name\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2014.7073388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2014.7073388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于压缩感知和感知减法的目标跟踪算法。提出了感知减法的概念,将感知减法与压缩感知相结合,对物联网中的分布式感知信息进行稀疏采样,利用压缩感知理论重构感知减法矩阵,利用感知减法对运动目标进行定位和跟踪。仿真结果表明,该算法能较好地恢复感知数据,稀疏采样策略减少了网络通信流量,提高了系统的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Target tracking in internet of things based on sensing subtraction and compressed sensing
A target tracking algorithm based on compressed sensing and sensing subtraction was proposed in this paper. We presented the concept of sensing subtraction, combined sensing subtraction and compressed sensing, sparsely sampled the distributed sensing information in Internet of Things (IoT), and reconstructed sensing subtraction matrix by compressed sensing theory, and then located and tracked moving target by sensing subtraction method. Simulation results show that the proposed algorithm recovers sensing data well, and the sparse sampling strategy reduces network communication traffic and improves the energy-efficiency of system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Monte Carlo calculation method of multiple integration A group attack detecter for collaborative filtering recommendation A real-time stream system based on node.js A CP-ABE scheme with system attributes revocation in cloud storage Application of wavelet transform in laser detection of underwater acoustic signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1