基于小波变换的心音信号噪声抑制参数研究

Shinya Kudo, Keisuke Nishijima, Shingo Uenohara, K. Furuya
{"title":"基于小波变换的心音信号噪声抑制参数研究","authors":"Shinya Kudo, Keisuke Nishijima, Shingo Uenohara, K. Furuya","doi":"10.1109/CISIS.2016.50","DOIUrl":null,"url":null,"abstract":"While heart disease is one of the three major diseases, only well-qualified doctors can evaluate phonocardiographic signals. This calls for an easily available system that can automatically diagnose phonocardiographic signals. When recording in a room, suppression is required as these signals are heavily contaminated by noise from various sources such as air conditioners and fans. Wavelet transform is one method for denoising phonocardiographic signals, but appropriate parameters are required. In this study, we investigated both normal and abnormal phonocardiographic signals to determine the appropriate use of single and multilevel thresholds and the best types of wavelet functions. The experiment results show that the most appropriate wavelet function is Symlet14 and multilevel thresholding is best for low SNRs.","PeriodicalId":249236,"journal":{"name":"2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameters of Noise Suppression Based on Wavelet Transform for Phonocardiographic Signals\",\"authors\":\"Shinya Kudo, Keisuke Nishijima, Shingo Uenohara, K. Furuya\",\"doi\":\"10.1109/CISIS.2016.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While heart disease is one of the three major diseases, only well-qualified doctors can evaluate phonocardiographic signals. This calls for an easily available system that can automatically diagnose phonocardiographic signals. When recording in a room, suppression is required as these signals are heavily contaminated by noise from various sources such as air conditioners and fans. Wavelet transform is one method for denoising phonocardiographic signals, but appropriate parameters are required. In this study, we investigated both normal and abnormal phonocardiographic signals to determine the appropriate use of single and multilevel thresholds and the best types of wavelet functions. The experiment results show that the most appropriate wavelet function is Symlet14 and multilevel thresholding is best for low SNRs.\",\"PeriodicalId\":249236,\"journal\":{\"name\":\"2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISIS.2016.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISIS.2016.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然心脏病是三大疾病之一,但只有非常合格的医生才能评估心音信号。这就需要一种容易获得的系统,能够自动诊断心音信号。在室内录音时,由于这些信号受到各种噪声源(如空调和风扇)的严重污染,因此需要进行抑制。小波变换是心音信号去噪的一种方法,但需要适当的参数。在这项研究中,我们研究了正常和异常的心音信号,以确定单级和多级阈值的适当使用以及小波函数的最佳类型。实验结果表明,最适合的小波函数是Symlet14,对于低信噪比,多级阈值处理效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameters of Noise Suppression Based on Wavelet Transform for Phonocardiographic Signals
While heart disease is one of the three major diseases, only well-qualified doctors can evaluate phonocardiographic signals. This calls for an easily available system that can automatically diagnose phonocardiographic signals. When recording in a room, suppression is required as these signals are heavily contaminated by noise from various sources such as air conditioners and fans. Wavelet transform is one method for denoising phonocardiographic signals, but appropriate parameters are required. In this study, we investigated both normal and abnormal phonocardiographic signals to determine the appropriate use of single and multilevel thresholds and the best types of wavelet functions. The experiment results show that the most appropriate wavelet function is Symlet14 and multilevel thresholding is best for low SNRs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Model Generation of Cattle by Shape-from-Silhouette Method for ICT Agriculture Improvement of Mesh Free Deforming Analysis for Maxillofacial Palpation on a Virtual Training System A Proposal of Coding Rule Learning Function in Java Programming Learning Assistant System 3D Model Data Retrieval System Using KAZE Feature for Accepting 2D Image as Query Flexible Screen Sharing System between PC and Tablet for Collaborative Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1