{"title":"可变高度固定翼无人机通信节能框架","authors":"Jared Miller, S. Uludag","doi":"10.1109/ICCWorkshops50388.2021.9473819","DOIUrl":null,"url":null,"abstract":"The Unmanned Aerial Vehicle (UAV) has recently appeared as a good candidate for providing wireless network connectivity, with several advantages over traditional ground infrastructure. With the addition of on-board energy harvesting, such platforms have the potential for perpetual-endurance flight and wireless connectivity. Yet, UAV modeling, especially with respect to this combination of capabilities, is not well-understood. In this paper, we demonstrate a framework for analyzing the energy balance of simplified trajectories in three dimensions for fixed-wing aircraft with on-board solar energy harvesting, as well as integrating the trajectory into the NS3 simulator to evaluate network performance. This framework is applied to a small number of trajectory designs, showing that benefits may exist for non-circle trajectories, as well as some advantages and disadvantages of using altitude to conserve additional energy.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy-Efficiency Framework for Fixed-Wing UAV Communications With Variable Altitude\",\"authors\":\"Jared Miller, S. Uludag\",\"doi\":\"10.1109/ICCWorkshops50388.2021.9473819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Unmanned Aerial Vehicle (UAV) has recently appeared as a good candidate for providing wireless network connectivity, with several advantages over traditional ground infrastructure. With the addition of on-board energy harvesting, such platforms have the potential for perpetual-endurance flight and wireless connectivity. Yet, UAV modeling, especially with respect to this combination of capabilities, is not well-understood. In this paper, we demonstrate a framework for analyzing the energy balance of simplified trajectories in three dimensions for fixed-wing aircraft with on-board solar energy harvesting, as well as integrating the trajectory into the NS3 simulator to evaluate network performance. This framework is applied to a small number of trajectory designs, showing that benefits may exist for non-circle trajectories, as well as some advantages and disadvantages of using altitude to conserve additional energy.\",\"PeriodicalId\":127186,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWorkshops50388.2021.9473819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-Efficiency Framework for Fixed-Wing UAV Communications With Variable Altitude
The Unmanned Aerial Vehicle (UAV) has recently appeared as a good candidate for providing wireless network connectivity, with several advantages over traditional ground infrastructure. With the addition of on-board energy harvesting, such platforms have the potential for perpetual-endurance flight and wireless connectivity. Yet, UAV modeling, especially with respect to this combination of capabilities, is not well-understood. In this paper, we demonstrate a framework for analyzing the energy balance of simplified trajectories in three dimensions for fixed-wing aircraft with on-board solar energy harvesting, as well as integrating the trajectory into the NS3 simulator to evaluate network performance. This framework is applied to a small number of trajectory designs, showing that benefits may exist for non-circle trajectories, as well as some advantages and disadvantages of using altitude to conserve additional energy.