使用非负矩阵分解提取人类活动的日常模式

M. Abe, Akihiko Hirayama, Sunao Hara
{"title":"使用非负矩阵分解提取人类活动的日常模式","authors":"M. Abe, Akihiko Hirayama, Sunao Hara","doi":"10.1109/ICCE.2015.7066309","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm to mine basic patterns of human activities on a daily basis using non-negative matrix factorization (NMF). The greatest benefit of the algorithm is that it can elicit patterns from which meanings can be easily interpreted. To confirm its performance, the proposed algorithm was applied to PC logging data collected from three occupations in offices. Daily patterns of software usage were extracted for each occupation. Results show that each occupation uses specific software in its own time period, and uses several types of software in parallel in its own combinations. Experiment results also show that patterns of 144 dimension vectors were compressible to those of 11 dimension vectors without degradation in occupation classification performance. Therefore, the proposed algorithm compressed basic software usage patterns to about one-tenth of their original dimensions while preserving the original information. Moreover, the extracted basic patterns showed reasonable interpretation of daily working patterns in offices.","PeriodicalId":169402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics (ICCE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracting daily patterns of human activity using non-negative matrix factorization\",\"authors\":\"M. Abe, Akihiko Hirayama, Sunao Hara\",\"doi\":\"10.1109/ICCE.2015.7066309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm to mine basic patterns of human activities on a daily basis using non-negative matrix factorization (NMF). The greatest benefit of the algorithm is that it can elicit patterns from which meanings can be easily interpreted. To confirm its performance, the proposed algorithm was applied to PC logging data collected from three occupations in offices. Daily patterns of software usage were extracted for each occupation. Results show that each occupation uses specific software in its own time period, and uses several types of software in parallel in its own combinations. Experiment results also show that patterns of 144 dimension vectors were compressible to those of 11 dimension vectors without degradation in occupation classification performance. Therefore, the proposed algorithm compressed basic software usage patterns to about one-tenth of their original dimensions while preserving the original information. Moreover, the extracted basic patterns showed reasonable interpretation of daily working patterns in offices.\",\"PeriodicalId\":169402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2015.7066309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2015.7066309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用非负矩阵分解(NMF)挖掘人类日常活动基本模式的算法。该算法的最大好处是,它可以推导出易于解释含义的模式。为了验证该算法的性能,将该算法应用于三种办公室职业的PC测井数据。提取了每个职业的日常软件使用模式。结果表明,每个职业在自己的时间段使用特定的软件,并在自己的组合中并行使用几种类型的软件。实验结果还表明,144维向量的模式可压缩为11维向量的模式,而职业分类性能没有下降。因此,该算法在保留原始信息的同时,将基本的软件使用模式压缩到原来的十分之一左右。此外,提取的基本模式对办公室的日常工作模式有合理的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracting daily patterns of human activity using non-negative matrix factorization
This paper presents an algorithm to mine basic patterns of human activities on a daily basis using non-negative matrix factorization (NMF). The greatest benefit of the algorithm is that it can elicit patterns from which meanings can be easily interpreted. To confirm its performance, the proposed algorithm was applied to PC logging data collected from three occupations in offices. Daily patterns of software usage were extracted for each occupation. Results show that each occupation uses specific software in its own time period, and uses several types of software in parallel in its own combinations. Experiment results also show that patterns of 144 dimension vectors were compressible to those of 11 dimension vectors without degradation in occupation classification performance. Therefore, the proposed algorithm compressed basic software usage patterns to about one-tenth of their original dimensions while preserving the original information. Moreover, the extracted basic patterns showed reasonable interpretation of daily working patterns in offices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lua-based self-management framework for Internet of Things Indoor location technique based on visible light communications and ultrasound emitters LDA-based face recognition using multiple distance training face images with low user cooperation Fast and efficient haze removal Fast and robust camera's auto exposure control using convex or concave model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1