声纳不确定度和灵敏度分析技术

D. Sweet, C. Gillard
{"title":"声纳不确定度和灵敏度分析技术","authors":"D. Sweet, C. Gillard","doi":"10.1109/OCEANSSYD.2010.5603543","DOIUrl":null,"url":null,"abstract":"Current sonar performance prediction models provide outputs such as probability of detection. It is desirable to give measures of uncertainty in the output due to uncertainty in all the inputs. This process is uncertainty analysis (UA). It is also desirable to indicate the sensitivity of the output to uncertainty in each of the inputs. This process is sensitivity analysis (SA). In this paper, a set of techniques has been incorporated into a sonar uncertainty and prediction tool (SUST) which carries out the main steps of UA/SA: (1) sampling of inputs, (2) propagation of inputs through a model to yield outputs, (3) UA from outputs and (4) SA from outputs. In the following, two enhancements to a previous UA/SA tool are presented: (a) empirical orthogonal functions, a general method of representing uncertainty in the sound speed profile. and (b) Latin hypercube sampling, a more efficient means of sampling the input space. This paper demonstrates the use of the techniques by performing UA/SA for an environment offshore from Sydney, Australia.","PeriodicalId":129808,"journal":{"name":"OCEANS'10 IEEE SYDNEY","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sonar uncertainty and sensitivity analysis techniques\",\"authors\":\"D. Sweet, C. Gillard\",\"doi\":\"10.1109/OCEANSSYD.2010.5603543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current sonar performance prediction models provide outputs such as probability of detection. It is desirable to give measures of uncertainty in the output due to uncertainty in all the inputs. This process is uncertainty analysis (UA). It is also desirable to indicate the sensitivity of the output to uncertainty in each of the inputs. This process is sensitivity analysis (SA). In this paper, a set of techniques has been incorporated into a sonar uncertainty and prediction tool (SUST) which carries out the main steps of UA/SA: (1) sampling of inputs, (2) propagation of inputs through a model to yield outputs, (3) UA from outputs and (4) SA from outputs. In the following, two enhancements to a previous UA/SA tool are presented: (a) empirical orthogonal functions, a general method of representing uncertainty in the sound speed profile. and (b) Latin hypercube sampling, a more efficient means of sampling the input space. This paper demonstrates the use of the techniques by performing UA/SA for an environment offshore from Sydney, Australia.\",\"PeriodicalId\":129808,\"journal\":{\"name\":\"OCEANS'10 IEEE SYDNEY\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS'10 IEEE SYDNEY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSSYD.2010.5603543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS'10 IEEE SYDNEY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSSYD.2010.5603543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的声纳性能预测模型提供诸如探测概率之类的输出。由于所有输入都存在不确定性,因此最好给出输出不确定性的度量。这个过程就是不确定性分析(UA)。还需要指出输出对每个输入的不确定性的敏感性。这个过程就是敏感性分析(SA)。本文将一组技术纳入声纳不确定性和预测工具(SUST),该工具执行UA/SA的主要步骤:(1)输入采样,(2)通过模型传播输入以产生输出,(3)从输出获得UA,(4)从输出获得SA。下面介绍了对以前的UA/SA工具的两个改进:(a)经验正交函数,这是一种表示声速剖面不确定性的一般方法。(b)拉丁超立方体采样,一种更有效的输入空间采样方法。本文通过在澳大利亚悉尼的海上环境中执行UA/SA来演示该技术的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sonar uncertainty and sensitivity analysis techniques
Current sonar performance prediction models provide outputs such as probability of detection. It is desirable to give measures of uncertainty in the output due to uncertainty in all the inputs. This process is uncertainty analysis (UA). It is also desirable to indicate the sensitivity of the output to uncertainty in each of the inputs. This process is sensitivity analysis (SA). In this paper, a set of techniques has been incorporated into a sonar uncertainty and prediction tool (SUST) which carries out the main steps of UA/SA: (1) sampling of inputs, (2) propagation of inputs through a model to yield outputs, (3) UA from outputs and (4) SA from outputs. In the following, two enhancements to a previous UA/SA tool are presented: (a) empirical orthogonal functions, a general method of representing uncertainty in the sound speed profile. and (b) Latin hypercube sampling, a more efficient means of sampling the input space. This paper demonstrates the use of the techniques by performing UA/SA for an environment offshore from Sydney, Australia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust discrete Fourier transform based receivers for continuous phase modulation Near-field beamforming for a Multi-Beam Echo Sounder: Approximation and error analysis Long-term real-time monitoring of free-ranging Bottlenose dolphins (Tursiops truncatus) in an aquarium using 5-hydrophone array system Proven high efficiency anchor for harsh cyclonic environments Rugosity, slope and aspect from bathymetric stereo image reconstructions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1