基于集成GRU神经网络的混合模型短期PM2.5预报

Wei Jiang, Songyan Li, Zefeng Xie, Wanling Chen, Choujun Zhan
{"title":"基于集成GRU神经网络的混合模型短期PM2.5预报","authors":"Wei Jiang, Songyan Li, Zefeng Xie, Wanling Chen, Choujun Zhan","doi":"10.1109/INDIN45582.2020.9442178","DOIUrl":null,"url":null,"abstract":"PM2.5 (particular matter with a diameter of 2.5µm or less) is one of the most important indicators of air pollution. In the field of environmental science, how to forecast PM2.5 is an important topic. We construct a previous 24-hour indicator before the predicted point to construct an enhanced dataset for PM2.5 concentration prediction. However, with a large scale of features, the performances of fundamental neural networks are not stable or accurate enough. As a result, an ensemble GRU (Gate Recurrent Unit) neural network is proposed for short-term PM2.5 prediction. This approach can improve accuracy while maintaining stability by combining the outputs after varying training. In this study, a dataset, which recording 6 indicators (PM2.5, PM10, CO, NO2, O3, SO2) for more than 20,000 hours in Shenzhen, is adopted to evaluate the proposed approach. Experimental results indicate that the proposed ensemble GRU model provides the lowest scores in MSE, RMSE criteria, and the best average-results in R2, MSE, RMSE scores.","PeriodicalId":185948,"journal":{"name":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Short-term PM2.5 Forecasting with a Hybrid Model Based on Ensemble GRU Neural Network\",\"authors\":\"Wei Jiang, Songyan Li, Zefeng Xie, Wanling Chen, Choujun Zhan\",\"doi\":\"10.1109/INDIN45582.2020.9442178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PM2.5 (particular matter with a diameter of 2.5µm or less) is one of the most important indicators of air pollution. In the field of environmental science, how to forecast PM2.5 is an important topic. We construct a previous 24-hour indicator before the predicted point to construct an enhanced dataset for PM2.5 concentration prediction. However, with a large scale of features, the performances of fundamental neural networks are not stable or accurate enough. As a result, an ensemble GRU (Gate Recurrent Unit) neural network is proposed for short-term PM2.5 prediction. This approach can improve accuracy while maintaining stability by combining the outputs after varying training. In this study, a dataset, which recording 6 indicators (PM2.5, PM10, CO, NO2, O3, SO2) for more than 20,000 hours in Shenzhen, is adopted to evaluate the proposed approach. Experimental results indicate that the proposed ensemble GRU model provides the lowest scores in MSE, RMSE criteria, and the best average-results in R2, MSE, RMSE scores.\",\"PeriodicalId\":185948,\"journal\":{\"name\":\"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45582.2020.9442178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45582.2020.9442178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

PM2.5(指直径小于等于2.5微米的物质)是空气污染最重要的指标之一。在环境科学领域,如何预测PM2.5是一个重要的课题。我们在预测点之前构建一个24小时前的指标来构建PM2.5浓度预测的增强数据集。然而,在特征规模较大的情况下,基础神经网络的性能不够稳定或不够准确。因此,本文提出了一种用于PM2.5短期预测的集成GRU(门递归单元)神经网络。这种方法可以通过组合不同训练后的输出来提高精度,同时保持稳定性。本研究以深圳地区6个指标(PM2.5、PM10、CO、NO2、O3、SO2)超过2万小时的数据集为样本,对该方法进行了评价。实验结果表明,所提出的集成GRU模型在MSE、RMSE标准上得分最低,在R2、MSE、RMSE得分上平均得分最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short-term PM2.5 Forecasting with a Hybrid Model Based on Ensemble GRU Neural Network
PM2.5 (particular matter with a diameter of 2.5µm or less) is one of the most important indicators of air pollution. In the field of environmental science, how to forecast PM2.5 is an important topic. We construct a previous 24-hour indicator before the predicted point to construct an enhanced dataset for PM2.5 concentration prediction. However, with a large scale of features, the performances of fundamental neural networks are not stable or accurate enough. As a result, an ensemble GRU (Gate Recurrent Unit) neural network is proposed for short-term PM2.5 prediction. This approach can improve accuracy while maintaining stability by combining the outputs after varying training. In this study, a dataset, which recording 6 indicators (PM2.5, PM10, CO, NO2, O3, SO2) for more than 20,000 hours in Shenzhen, is adopted to evaluate the proposed approach. Experimental results indicate that the proposed ensemble GRU model provides the lowest scores in MSE, RMSE criteria, and the best average-results in R2, MSE, RMSE scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A GWO-AFSA-SVM Model-Based Fault Pattern Recognition for the Power Equipment of Autonomous vessels System and Software Engineering, Runtime Intelligence Sentiment Analysis of Chinese E-commerce Reviews Based on BERT IoT - and blockchain-enabled credible scheduling in cloud manufacturing: a systemic framework Industry Digitalisation, Digital Twins in Industrial Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1