随机相位估计和展开

Mara Pistellato, Filippo Bergamasco, A. Albarelli, L. Cosmo, A. Gasparetto, A. Torsello
{"title":"随机相位估计和展开","authors":"Mara Pistellato, Filippo Bergamasco, A. Albarelli, L. Cosmo, A. Gasparetto, A. Torsello","doi":"10.5220/0007389402000209","DOIUrl":null,"url":null,"abstract":"Phase-shift is one of the most effective techniques in 3D structured-light scanning for its accuracy and noise resilience. However, the periodic nature of the signal causes a spatial ambiguity when the fringe periods are shorter than the projector resolution. To solve this, many techniques exploit multiple combined signals to unwrap the phases and thus recovering a unique consistent code. In this paper, we study the phase estimation and unwrapping problem in a stochastic context. Assuming the acquired fringe signal to be affected by additive white Gaussian noise, we start by modelling each estimated phase as a zero-mean Wrapped Normal distribution with variance σ2. Then, our contributions are twofolds. First, we show how to recover the best projector code given multiple phase observations by means of a ML estimation over the combined fringe distributions. Second, we exploit the Cramer-Rao bounds to relate the phase variance σ2 to the variance of the observed signal, that can be easily estimated online during the fringe acquisition. An extensive set of experiments demonstrate that our approach outperforms other methods in terms of code recovery accuracy and ratio of faulty unwrappings.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic Phase Estimation and Unwrapping\",\"authors\":\"Mara Pistellato, Filippo Bergamasco, A. Albarelli, L. Cosmo, A. Gasparetto, A. Torsello\",\"doi\":\"10.5220/0007389402000209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase-shift is one of the most effective techniques in 3D structured-light scanning for its accuracy and noise resilience. However, the periodic nature of the signal causes a spatial ambiguity when the fringe periods are shorter than the projector resolution. To solve this, many techniques exploit multiple combined signals to unwrap the phases and thus recovering a unique consistent code. In this paper, we study the phase estimation and unwrapping problem in a stochastic context. Assuming the acquired fringe signal to be affected by additive white Gaussian noise, we start by modelling each estimated phase as a zero-mean Wrapped Normal distribution with variance σ2. Then, our contributions are twofolds. First, we show how to recover the best projector code given multiple phase observations by means of a ML estimation over the combined fringe distributions. Second, we exploit the Cramer-Rao bounds to relate the phase variance σ2 to the variance of the observed signal, that can be easily estimated online during the fringe acquisition. An extensive set of experiments demonstrate that our approach outperforms other methods in terms of code recovery accuracy and ratio of faulty unwrappings.\",\"PeriodicalId\":410036,\"journal\":{\"name\":\"International Conference on Pattern Recognition Applications and Methods\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007389402000209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007389402000209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

相移是三维结构光扫描中最有效的技术之一,具有精度高、抗噪性好等优点。然而,当条纹周期短于投影仪分辨率时,信号的周期性会导致空间模糊。为了解决这个问题,许多技术利用多个组合信号来解开相位,从而恢复唯一的一致代码。本文研究了随机环境下的相位估计和解包裹问题。假设采集到的条纹信号受到加性高斯白噪声的影响,我们首先将每个估计相位建模为方差为σ2的零均值包裹正态分布。那么,我们的贡献是双重的。首先,我们展示了如何通过对组合条纹分布的ML估计来恢复给定多相观测的最佳投影仪代码。其次,我们利用Cramer-Rao边界将相位方差σ2与观测信号的方差联系起来,可以在条纹采集过程中轻松地在线估计。大量的实验表明,我们的方法在代码恢复精度和错误展开率方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic Phase Estimation and Unwrapping
Phase-shift is one of the most effective techniques in 3D structured-light scanning for its accuracy and noise resilience. However, the periodic nature of the signal causes a spatial ambiguity when the fringe periods are shorter than the projector resolution. To solve this, many techniques exploit multiple combined signals to unwrap the phases and thus recovering a unique consistent code. In this paper, we study the phase estimation and unwrapping problem in a stochastic context. Assuming the acquired fringe signal to be affected by additive white Gaussian noise, we start by modelling each estimated phase as a zero-mean Wrapped Normal distribution with variance σ2. Then, our contributions are twofolds. First, we show how to recover the best projector code given multiple phase observations by means of a ML estimation over the combined fringe distributions. Second, we exploit the Cramer-Rao bounds to relate the phase variance σ2 to the variance of the observed signal, that can be easily estimated online during the fringe acquisition. An extensive set of experiments demonstrate that our approach outperforms other methods in terms of code recovery accuracy and ratio of faulty unwrappings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm On Spectrogram Analysis in a Multiple Classifier Fusion Framework for Power Grid Classification Using Electric Network Frequency Semantic Properties of cosine based bias scores for word embeddings Double Trouble? Impact and Detection of Duplicates in Face Image Datasets Detecting Brain Tumors through Multimodal Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1