{"title":"通过大概率突变降低人工神经网络过拟合","authors":"Croitoru Nicolae-Eugen","doi":"10.1109/SYNASC.2016.059","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks often suffer from overfitting, both when trained through backpropagation or evolved through a Genetic Algorithm. An attempt at mitigating the overfitting of GA-evolved ANNs is made by using High-Probability Mutation (≈0.95) on binary-encoded ANN weights. The benchmark used is predicting the evolution of an Internet social network using real-world data. A lower bound is put on the overfit, and both prediction error and overfit are further broken down according to ANN hidden-layers size.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lowering Evolved Artificial Neural Network Overfitting through High-Probability Mutation\",\"authors\":\"Croitoru Nicolae-Eugen\",\"doi\":\"10.1109/SYNASC.2016.059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Neural Networks often suffer from overfitting, both when trained through backpropagation or evolved through a Genetic Algorithm. An attempt at mitigating the overfitting of GA-evolved ANNs is made by using High-Probability Mutation (≈0.95) on binary-encoded ANN weights. The benchmark used is predicting the evolution of an Internet social network using real-world data. A lower bound is put on the overfit, and both prediction error and overfit are further broken down according to ANN hidden-layers size.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lowering Evolved Artificial Neural Network Overfitting through High-Probability Mutation
Artificial Neural Networks often suffer from overfitting, both when trained through backpropagation or evolved through a Genetic Algorithm. An attempt at mitigating the overfitting of GA-evolved ANNs is made by using High-Probability Mutation (≈0.95) on binary-encoded ANN weights. The benchmark used is predicting the evolution of an Internet social network using real-world data. A lower bound is put on the overfit, and both prediction error and overfit are further broken down according to ANN hidden-layers size.