基于粒子群算法的航天器姿态机动自抗扰控制器参数优化

Ping Wang, Hua Wang, Guoyu Bai, Lin Su
{"title":"基于粒子群算法的航天器姿态机动自抗扰控制器参数优化","authors":"Ping Wang, Hua Wang, Guoyu Bai, Lin Su","doi":"10.1109/IHMSC.2014.149","DOIUrl":null,"url":null,"abstract":"In this paper, parameter of ADRC for spacecraft attitude maneuvering is optimizated. Nonlinear dynamics model of spacecraft attitude describes attitude motion. Particle Swarm Optimization Algorithm is used for parameter optimization of ADRC. The controller index which describes attitude adjustment capacity of three axes is designed. The influence of controller parameter is quantifiable on the control performance. The selection of parameter based on traditonal experience is avoided. Simulation results show that: the particle swarm optimization algorithm for system updates through the position and velocity. The system can quickly converge to the global optimal solution, and the parameter of ADRC is optimized.","PeriodicalId":370654,"journal":{"name":"2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameter Optimization of ADRC for Spacecraft Attitude Maneuver Based on Particle Swarm Optimization Algorithm\",\"authors\":\"Ping Wang, Hua Wang, Guoyu Bai, Lin Su\",\"doi\":\"10.1109/IHMSC.2014.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, parameter of ADRC for spacecraft attitude maneuvering is optimizated. Nonlinear dynamics model of spacecraft attitude describes attitude motion. Particle Swarm Optimization Algorithm is used for parameter optimization of ADRC. The controller index which describes attitude adjustment capacity of three axes is designed. The influence of controller parameter is quantifiable on the control performance. The selection of parameter based on traditonal experience is avoided. Simulation results show that: the particle swarm optimization algorithm for system updates through the position and velocity. The system can quickly converge to the global optimal solution, and the parameter of ADRC is optimized.\",\"PeriodicalId\":370654,\"journal\":{\"name\":\"2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2014.149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2014.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对航天器姿态机动的自抗扰控制器参数进行了优化。航天器姿态非线性动力学模型描述了姿态运动。采用粒子群算法对自抗扰控制器进行参数优化。设计了描述三轴姿态调整能力的控制器指标。控制器参数对控制性能的影响是可以量化的。避免了基于传统经验的参数选择。仿真结果表明:粒子群优化算法通过位置和速度对系统进行更新。该系统能快速收敛到全局最优解,并对自抗扰控制器的参数进行了优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter Optimization of ADRC for Spacecraft Attitude Maneuver Based on Particle Swarm Optimization Algorithm
In this paper, parameter of ADRC for spacecraft attitude maneuvering is optimizated. Nonlinear dynamics model of spacecraft attitude describes attitude motion. Particle Swarm Optimization Algorithm is used for parameter optimization of ADRC. The controller index which describes attitude adjustment capacity of three axes is designed. The influence of controller parameter is quantifiable on the control performance. The selection of parameter based on traditonal experience is avoided. Simulation results show that: the particle swarm optimization algorithm for system updates through the position and velocity. The system can quickly converge to the global optimal solution, and the parameter of ADRC is optimized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Fuzzy Cognitive Maps to Analyze the Information Processing Model of Situation Awareness Nonlinear Modeling and Control of Active Magnetic Bearings for a Flywheel Energy Storage System A Control-Plane Traffic Analysis Tool for LTE Network Land Use/Cover Classification of Cloud-Contaminated Area by Multitemporal Remote Sensing Images A Piezoelectric Ultrasonic Clamp for Force Feedback Arm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1