基于余弦相似度上界的快速信息检索与社会网络挖掘

Weizhong Zhao, M. VenkataSwamy, Gang Chen, Xiaowei Xu
{"title":"基于余弦相似度上界的快速信息检索与社会网络挖掘","authors":"Weizhong Zhao, M. VenkataSwamy, Gang Chen, Xiaowei Xu","doi":"10.1109/SocialCom.2013.147","DOIUrl":null,"url":null,"abstract":"Similarity search is a key function for many applications including databases, pattern recognition and recommendation systems to name a few. In this paper, we first propose ε-query, a similarity search based on the popular cosine similarity for information retrieval and social network analysis. In contrast to traditional similarity search ε-query returns results whose cosine similarities with the query are larger than a threshold ε. The major contribution of this paper is an efficient ε-query processing algorithm by using an upper bound for binary data. Our evaluation using two of the largest publicly available real datasets, ClueWeb09 and Twitter, demonstrated that the proposed method could achieve several orders of magnitude speedup in comparison with the traditional approach. Last but not least, we applied the proposed method for information retrieval from ClueWeb and finding community structures from Twitter. The outcome further proved the effectiveness of the proposed method.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast Information Retrieval and Social Network Mining via Cosine Similarity Upper Bound\",\"authors\":\"Weizhong Zhao, M. VenkataSwamy, Gang Chen, Xiaowei Xu\",\"doi\":\"10.1109/SocialCom.2013.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similarity search is a key function for many applications including databases, pattern recognition and recommendation systems to name a few. In this paper, we first propose ε-query, a similarity search based on the popular cosine similarity for information retrieval and social network analysis. In contrast to traditional similarity search ε-query returns results whose cosine similarities with the query are larger than a threshold ε. The major contribution of this paper is an efficient ε-query processing algorithm by using an upper bound for binary data. Our evaluation using two of the largest publicly available real datasets, ClueWeb09 and Twitter, demonstrated that the proposed method could achieve several orders of magnitude speedup in comparison with the traditional approach. Last but not least, we applied the proposed method for information retrieval from ClueWeb and finding community structures from Twitter. The outcome further proved the effectiveness of the proposed method.\",\"PeriodicalId\":129308,\"journal\":{\"name\":\"2013 International Conference on Social Computing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialCom.2013.147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom.2013.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

相似性搜索是许多应用程序的关键功能,包括数据库、模式识别和推荐系统等等。本文首先提出了一种基于流行余弦相似度的相似性搜索方法ε-query,用于信息检索和社会网络分析。与传统的相似度搜索相比,ε-query返回的结果与查询的余弦相似度大于阈值ε。本文的主要贡献是一种利用二进制数据上界的高效ε-查询处理算法。我们使用两个最大的公开可用的真实数据集(ClueWeb09和Twitter)进行评估,结果表明,与传统方法相比,所提出的方法可以实现几个数量级的加速。最后,我们将该方法应用于ClueWeb的信息检索和Twitter的社区结构查找。实验结果进一步证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Information Retrieval and Social Network Mining via Cosine Similarity Upper Bound
Similarity search is a key function for many applications including databases, pattern recognition and recommendation systems to name a few. In this paper, we first propose ε-query, a similarity search based on the popular cosine similarity for information retrieval and social network analysis. In contrast to traditional similarity search ε-query returns results whose cosine similarities with the query are larger than a threshold ε. The major contribution of this paper is an efficient ε-query processing algorithm by using an upper bound for binary data. Our evaluation using two of the largest publicly available real datasets, ClueWeb09 and Twitter, demonstrated that the proposed method could achieve several orders of magnitude speedup in comparison with the traditional approach. Last but not least, we applied the proposed method for information retrieval from ClueWeb and finding community structures from Twitter. The outcome further proved the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group Recommendation Algorithm with Collaborative Filtering Access Control Policy Extraction from Unconstrained Natural Language Text Stock Market Manipulation Using Cyberattacks Together with Misinformation Disseminated through Social Media Friendship Prediction on Social Network Users An Empirical Comparison of Graph Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1