NAND闪存架构通过多写代码减少写放大

S. Odeh, Yuval Cassuto
{"title":"NAND闪存架构通过多写代码减少写放大","authors":"S. Odeh, Yuval Cassuto","doi":"10.1109/MSST.2014.6855549","DOIUrl":null,"url":null,"abstract":"Multi-write codes hold great promise to reduce write amplification in flash-based storage devices. In this work we propose two novel mapping architectures that show clear advantage over known schemes using multi-write codes, and over schemes not using such codes. We demonstrate the advantage of the proposed architectures by evaluating them with industry-accepted benchmark traces. The results show write amplification savings of double-digit percentages, for as low as 10% over-provisioning. In addition to showing the superiority of the new architectures on real-world workloads, the paper includes a study of the write-amplification performance on synthetically-generated workloads with time locality. In addition, some analytical insight is provided to assist the deployment of the architectures in real storage devices with varying device parameters.","PeriodicalId":188071,"journal":{"name":"2014 30th Symposium on Mass Storage Systems and Technologies (MSST)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"NAND flash architectures reducing write amplification through multi-write codes\",\"authors\":\"S. Odeh, Yuval Cassuto\",\"doi\":\"10.1109/MSST.2014.6855549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-write codes hold great promise to reduce write amplification in flash-based storage devices. In this work we propose two novel mapping architectures that show clear advantage over known schemes using multi-write codes, and over schemes not using such codes. We demonstrate the advantage of the proposed architectures by evaluating them with industry-accepted benchmark traces. The results show write amplification savings of double-digit percentages, for as low as 10% over-provisioning. In addition to showing the superiority of the new architectures on real-world workloads, the paper includes a study of the write-amplification performance on synthetically-generated workloads with time locality. In addition, some analytical insight is provided to assist the deployment of the architectures in real storage devices with varying device parameters.\",\"PeriodicalId\":188071,\"journal\":{\"name\":\"2014 30th Symposium on Mass Storage Systems and Technologies (MSST)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 30th Symposium on Mass Storage Systems and Technologies (MSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSST.2014.6855549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 30th Symposium on Mass Storage Systems and Technologies (MSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSST.2014.6855549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

多写代码在减少基于闪存的存储设备的写入放大方面具有很大的前景。在这项工作中,我们提出了两种新的映射架构,它们比使用多写代码的已知方案和不使用多写代码的方案显示出明显的优势。我们通过使用行业认可的基准跟踪来评估所提出的体系结构,从而展示了它们的优势。结果显示,对于低至10%的过度配置,写入放大节省了两位数的百分比。除了展示新架构在实际工作负载上的优势外,本文还研究了具有时间局域性的合成生成工作负载上的写放大性能。此外,还提供了一些分析见解,以帮助在具有不同设备参数的实际存储设备中部署体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NAND flash architectures reducing write amplification through multi-write codes
Multi-write codes hold great promise to reduce write amplification in flash-based storage devices. In this work we propose two novel mapping architectures that show clear advantage over known schemes using multi-write codes, and over schemes not using such codes. We demonstrate the advantage of the proposed architectures by evaluating them with industry-accepted benchmark traces. The results show write amplification savings of double-digit percentages, for as low as 10% over-provisioning. In addition to showing the superiority of the new architectures on real-world workloads, the paper includes a study of the write-amplification performance on synthetically-generated workloads with time locality. In addition, some analytical insight is provided to assist the deployment of the architectures in real storage devices with varying device parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic generation of behavioral hard disk drive access time models Advanced magnetic tape technology for linear tape systems: Barium ferrite technology beyond the limitation of metal particulate media NAND flash architectures reducing write amplification through multi-write codes HiSMRfs: A high performance file system for shingled storage array Anode: Empirical detection of performance problems in storage systems using time-series analysis of periodic measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1