COVID-19研究文献中的知识发现

Alejandro Piad-Morffis, Suilan Estévez-Velarde, Ernesto L. Estevanell-Valladares, Yoan Gutiérrez Vázquez, A. Montoyo, R. Muñoz, Yudivián Almeida-Cruz
{"title":"COVID-19研究文献中的知识发现","authors":"Alejandro Piad-Morffis, Suilan Estévez-Velarde, Ernesto L. Estevanell-Valladares, Yoan Gutiérrez Vázquez, A. Montoyo, R. Muñoz, Yudivián Almeida-Cruz","doi":"10.18653/v1/2020.nlpcovid19-2.22","DOIUrl":null,"url":null,"abstract":"This paper presents the preliminary results of an ongoing project that analyzes the growing body of scientific research published around the COVID-19 pandemic. In this research, a general-purpose semantic model is used to double annotate a batch of 500 sentences that were manually selected from the CORD-19 corpus. Afterwards, a baseline text-mining pipeline is designed and evaluated via a large batch of 100,959 sentences. We present a qualitative analysis of the most interesting facts automatically extracted and highlight possible future lines of development. The preliminary results show that general-purpose semantic models are a useful tool for discovering fine-grained knowledge in large corpora of scientific documents.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Knowledge Discovery in COVID-19 Research Literature\",\"authors\":\"Alejandro Piad-Morffis, Suilan Estévez-Velarde, Ernesto L. Estevanell-Valladares, Yoan Gutiérrez Vázquez, A. Montoyo, R. Muñoz, Yudivián Almeida-Cruz\",\"doi\":\"10.18653/v1/2020.nlpcovid19-2.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the preliminary results of an ongoing project that analyzes the growing body of scientific research published around the COVID-19 pandemic. In this research, a general-purpose semantic model is used to double annotate a batch of 500 sentences that were manually selected from the CORD-19 corpus. Afterwards, a baseline text-mining pipeline is designed and evaluated via a large batch of 100,959 sentences. We present a qualitative analysis of the most interesting facts automatically extracted and highlight possible future lines of development. The preliminary results show that general-purpose semantic models are a useful tool for discovering fine-grained knowledge in large corpora of scientific documents.\",\"PeriodicalId\":284493,\"journal\":{\"name\":\"Recent Advances in Natural Language Processing\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.nlpcovid19-2.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.nlpcovid19-2.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一个正在进行的项目的初步结果,该项目分析了围绕COVID-19大流行发表的越来越多的科学研究。在本研究中,使用通用语义模型对从CORD-19语料库中手动选择的500个句子进行双标注。然后,设计一个基线文本挖掘管道,并通过大量的100,959个句子进行评估。我们提出了一个定性分析最有趣的事实自动提取和突出可能的未来发展路线。初步结果表明,通用语义模型是在大型科学文献语料库中发现细粒度知识的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge Discovery in COVID-19 Research Literature
This paper presents the preliminary results of an ongoing project that analyzes the growing body of scientific research published around the COVID-19 pandemic. In this research, a general-purpose semantic model is used to double annotate a batch of 500 sentences that were manually selected from the CORD-19 corpus. Afterwards, a baseline text-mining pipeline is designed and evaluated via a large batch of 100,959 sentences. We present a qualitative analysis of the most interesting facts automatically extracted and highlight possible future lines of development. The preliminary results show that general-purpose semantic models are a useful tool for discovering fine-grained knowledge in large corpora of scientific documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Landscape of Natural Language Processing Research AspectCSE: Sentence Embeddings for Aspect-Based Semantic Textual Similarity Using Contrastive Learning and Structured Knowledge Efficient Domain Adaptation of Sentence Embeddings Using Adapters Neural Machine Translation for Sinhala-English Code-Mixed Text A Domain-Independent Holistic Approach to Deception Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1