具有贡献边际差异的过程灵活性设计鲁棒优化方法

Shixin Wang, Xuan Wang, Jiawei Zhang
{"title":"具有贡献边际差异的过程灵活性设计鲁棒优化方法","authors":"Shixin Wang, Xuan Wang, Jiawei Zhang","doi":"10.2139/ssrn.3233721","DOIUrl":null,"url":null,"abstract":"Problem definition: The theoretical investigation of the effectiveness of limited flexibility has mainly focused on a performance metric that is based on the maximum sales in units. However, this could lead to substantial profit losses when the maximum sales metric is used to guide flexibility designs while the products have considerably large profit margin differences. Academic/practical relevance: We address this issue by introducing margin differentials into the analysis of process flexibility designs, and our results can provide useful guidelines for the evaluation and design of flexibility configurations when the products have heterogeneous margins. Methodology: We adopt a robust optimization framework and study process flexibility designs from the worst-case perspective by introducing the dual margin group index (DMGI). Results and managerial implications: We show that a general class of worst-case performance measures can be expressed as functions of a design’s DMGIs and the given uncertainty set. Moreover, the DMGIs lead to a partial ordering that enables us to compare the worst-case performance of different designs. Applying these results, we prove that under the so-called partwise independently symmetric uncertainty sets and a broad class of worst-case performance measures, the alternate long-chain design is optimal among all long-chain designs with equal numbers of high-profit products and low-profit products. Finally, we develop a heuristic based on the DMGIs to generate effective flexibility designs when products exhibit margin differentials.","PeriodicalId":299310,"journal":{"name":"Econometrics: Mathematical Methods & Programming eJournal","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Robust Optimization Approach to Process Flexibility Designs with Contribution Margin Differentials\",\"authors\":\"Shixin Wang, Xuan Wang, Jiawei Zhang\",\"doi\":\"10.2139/ssrn.3233721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Problem definition: The theoretical investigation of the effectiveness of limited flexibility has mainly focused on a performance metric that is based on the maximum sales in units. However, this could lead to substantial profit losses when the maximum sales metric is used to guide flexibility designs while the products have considerably large profit margin differences. Academic/practical relevance: We address this issue by introducing margin differentials into the analysis of process flexibility designs, and our results can provide useful guidelines for the evaluation and design of flexibility configurations when the products have heterogeneous margins. Methodology: We adopt a robust optimization framework and study process flexibility designs from the worst-case perspective by introducing the dual margin group index (DMGI). Results and managerial implications: We show that a general class of worst-case performance measures can be expressed as functions of a design’s DMGIs and the given uncertainty set. Moreover, the DMGIs lead to a partial ordering that enables us to compare the worst-case performance of different designs. Applying these results, we prove that under the so-called partwise independently symmetric uncertainty sets and a broad class of worst-case performance measures, the alternate long-chain design is optimal among all long-chain designs with equal numbers of high-profit products and low-profit products. Finally, we develop a heuristic based on the DMGIs to generate effective flexibility designs when products exhibit margin differentials.\",\"PeriodicalId\":299310,\"journal\":{\"name\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3233721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Mathematical Methods & Programming eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3233721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

问题定义:对有限灵活性有效性的理论研究主要集中在基于单位最大销售额的绩效指标上。然而,当最大销售指标用于指导灵活性设计,而产品有相当大的利润率差异时,这可能导致大量的利润损失。学术/实践相关性:我们通过在过程灵活性设计的分析中引入边际差异来解决这个问题,当产品具有异质边际时,我们的结果可以为灵活性配置的评估和设计提供有用的指导。方法:采用稳健优化框架,引入双边际群指数(dual margin group index, DMGI),从最坏情况的角度研究过程灵活性设计。结果和管理意义:我们表明,一般的最坏情况性能度量可以表示为设计的dmgi和给定的不确定性集的函数。此外,dmgi导致部分排序,使我们能够比较不同设计的最坏情况性能。应用这些结果,我们证明了在所谓的部分独立对称不确定性集和一类广泛的最坏情况性能度量下,在高利润产品和低利润产品数量相等的所有长链设计中,备选长链设计是最优的。最后,我们开发了一种基于dmgi的启发式方法,以在产品表现出边际差异时产生有效的灵活性设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Optimization Approach to Process Flexibility Designs with Contribution Margin Differentials
Problem definition: The theoretical investigation of the effectiveness of limited flexibility has mainly focused on a performance metric that is based on the maximum sales in units. However, this could lead to substantial profit losses when the maximum sales metric is used to guide flexibility designs while the products have considerably large profit margin differences. Academic/practical relevance: We address this issue by introducing margin differentials into the analysis of process flexibility designs, and our results can provide useful guidelines for the evaluation and design of flexibility configurations when the products have heterogeneous margins. Methodology: We adopt a robust optimization framework and study process flexibility designs from the worst-case perspective by introducing the dual margin group index (DMGI). Results and managerial implications: We show that a general class of worst-case performance measures can be expressed as functions of a design’s DMGIs and the given uncertainty set. Moreover, the DMGIs lead to a partial ordering that enables us to compare the worst-case performance of different designs. Applying these results, we prove that under the so-called partwise independently symmetric uncertainty sets and a broad class of worst-case performance measures, the alternate long-chain design is optimal among all long-chain designs with equal numbers of high-profit products and low-profit products. Finally, we develop a heuristic based on the DMGIs to generate effective flexibility designs when products exhibit margin differentials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameters Estimation of Photovoltaic Models Using a Novel Hybrid Seagull Optimization Algorithm Input Indivisibility and the Measurement Error Quadratically optimal equilibrium points of weakly potential bi-matrix games Mathematical Background of the Theory of Cycle of Money An Example for 'Weak Monotone Comparative Statics'
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1