{"title":"手写体德文数字的压缩自动编码器和支持向量机识别","authors":"R. Kabra","doi":"10.1109/ICISIM.2017.8122142","DOIUrl":null,"url":null,"abstract":"Representation of data is very important in case of machine learning. Better the representation, the classifiers will give better results. Contractive autoencoders are used to learn the representation of data which are robust to small changes in the input. This paper uses contractive autoencoder and SVM classifier for handwritten Devanagari numerals recognition. The accuracy obtained using CAE+SVM is 96 %.","PeriodicalId":139000,"journal":{"name":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Contractive autoencoder and SVM for recognition of handwritten Devanagari numerals\",\"authors\":\"R. Kabra\",\"doi\":\"10.1109/ICISIM.2017.8122142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representation of data is very important in case of machine learning. Better the representation, the classifiers will give better results. Contractive autoencoders are used to learn the representation of data which are robust to small changes in the input. This paper uses contractive autoencoder and SVM classifier for handwritten Devanagari numerals recognition. The accuracy obtained using CAE+SVM is 96 %.\",\"PeriodicalId\":139000,\"journal\":{\"name\":\"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIM.2017.8122142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIM.2017.8122142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contractive autoencoder and SVM for recognition of handwritten Devanagari numerals
Representation of data is very important in case of machine learning. Better the representation, the classifiers will give better results. Contractive autoencoders are used to learn the representation of data which are robust to small changes in the input. This paper uses contractive autoencoder and SVM classifier for handwritten Devanagari numerals recognition. The accuracy obtained using CAE+SVM is 96 %.