手写体德文数字的压缩自动编码器和支持向量机识别

R. Kabra
{"title":"手写体德文数字的压缩自动编码器和支持向量机识别","authors":"R. Kabra","doi":"10.1109/ICISIM.2017.8122142","DOIUrl":null,"url":null,"abstract":"Representation of data is very important in case of machine learning. Better the representation, the classifiers will give better results. Contractive autoencoders are used to learn the representation of data which are robust to small changes in the input. This paper uses contractive autoencoder and SVM classifier for handwritten Devanagari numerals recognition. The accuracy obtained using CAE+SVM is 96 %.","PeriodicalId":139000,"journal":{"name":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Contractive autoencoder and SVM for recognition of handwritten Devanagari numerals\",\"authors\":\"R. Kabra\",\"doi\":\"10.1109/ICISIM.2017.8122142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representation of data is very important in case of machine learning. Better the representation, the classifiers will give better results. Contractive autoencoders are used to learn the representation of data which are robust to small changes in the input. This paper uses contractive autoencoder and SVM classifier for handwritten Devanagari numerals recognition. The accuracy obtained using CAE+SVM is 96 %.\",\"PeriodicalId\":139000,\"journal\":{\"name\":\"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIM.2017.8122142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIM.2017.8122142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在机器学习中,数据的表示是非常重要的。更好的表示,分类器将给出更好的结果。压缩自编码器用于学习对输入的微小变化具有鲁棒性的数据表示。本文采用压缩自编码器和支持向量机分类器进行手写体数字识别。CAE+SVM的准确率为96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contractive autoencoder and SVM for recognition of handwritten Devanagari numerals
Representation of data is very important in case of machine learning. Better the representation, the classifiers will give better results. Contractive autoencoders are used to learn the representation of data which are robust to small changes in the input. This paper uses contractive autoencoder and SVM classifier for handwritten Devanagari numerals recognition. The accuracy obtained using CAE+SVM is 96 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid technique for splice site prediction Information fusion for images on FPGA: Pixel level with pseudo color Hierarchical document clustering based on cosine similarity measure Embedded home surveillance system with pyroelectric infrared sensor using GSM Healthcare data modeling in R
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1