基于句法和统计分析的双语搭配抽取

Chien-Cheng Wu, Jason J. S. Chang
{"title":"基于句法和统计分析的双语搭配抽取","authors":"Chien-Cheng Wu, Jason J. S. Chang","doi":"10.30019/IJCLCLP.200402.0001","DOIUrl":null,"url":null,"abstract":"In this paper, we describe an algorithm that employs syntactic and statistical analysis to extract bilingual collocations from a parallel corpus. Collocations are pervasive in all types of writing and can be found in phrases, chunks, proper names, idioms, and terminology. Therefore, automatic extraction of monolingual and bilingual collocations is important for many applications, including natural language generation, word sense disambiguation, machine translation, lexicography, and cross language information retrieval. Collocations can be classified as lexical or grammatical collocations. Lexical collocations exist between content words, while a grammatical collocation exists between a content word and function words or a syntactic structure. In addition, bilingual collocations can be rigid or flexible in both languages. Rigid collocation refers to words in a collocation must appear next to each other, or otherwise (flexible/elastic). We focus in this paper on extracting rigid lexical bilingual collocations. In our method, the preferred syntactic patterns are obtained from idioms and collocations in a machine-readable dictionary. Collocations matching the patterns are extracted from aligned sentences in a parallel corpus. We use a new alignment method based on punctuation statistics for sentence alignment. The punctuation-based approach is found to outperform the length-based approach with precision rates approaching 98%. The obtained collocations are subsequently matched up based on cross-linguistic statistical association. Statistical association between the whole collocations as well as words in collocations is used to link a collocation with its counterpart collocation in the other language. We implemented the proposed method on a very large Chinese-English parallel corpus and obtained satisfactory results.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Bilingual Collocation Extraction Based on Syntactic and Statistical Analyses\",\"authors\":\"Chien-Cheng Wu, Jason J. S. Chang\",\"doi\":\"10.30019/IJCLCLP.200402.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe an algorithm that employs syntactic and statistical analysis to extract bilingual collocations from a parallel corpus. Collocations are pervasive in all types of writing and can be found in phrases, chunks, proper names, idioms, and terminology. Therefore, automatic extraction of monolingual and bilingual collocations is important for many applications, including natural language generation, word sense disambiguation, machine translation, lexicography, and cross language information retrieval. Collocations can be classified as lexical or grammatical collocations. Lexical collocations exist between content words, while a grammatical collocation exists between a content word and function words or a syntactic structure. In addition, bilingual collocations can be rigid or flexible in both languages. Rigid collocation refers to words in a collocation must appear next to each other, or otherwise (flexible/elastic). We focus in this paper on extracting rigid lexical bilingual collocations. In our method, the preferred syntactic patterns are obtained from idioms and collocations in a machine-readable dictionary. Collocations matching the patterns are extracted from aligned sentences in a parallel corpus. We use a new alignment method based on punctuation statistics for sentence alignment. The punctuation-based approach is found to outperform the length-based approach with precision rates approaching 98%. The obtained collocations are subsequently matched up based on cross-linguistic statistical association. Statistical association between the whole collocations as well as words in collocations is used to link a collocation with its counterpart collocation in the other language. We implemented the proposed method on a very large Chinese-English parallel corpus and obtained satisfactory results.\",\"PeriodicalId\":436300,\"journal\":{\"name\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30019/IJCLCLP.200402.0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.200402.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

在本文中,我们描述了一种利用句法和统计分析从并行语料库中提取双语搭配的算法。搭配在所有类型的写作中都很普遍,可以在短语、块、专有名称、习语和术语中找到。因此,单语和双语搭配的自动提取对许多应用都很重要,包括自然语言生成、词义消歧、机器翻译、词典编纂和跨语言信息检索。搭配可分为词汇搭配和语法搭配。实词之间存在词汇搭配,实词与虚词或句法结构之间存在语法搭配。此外,双语搭配在两种语言中都可以是刚性的或灵活的。刚性搭配指的是搭配中的单词必须紧挨着出现,否则(有弹性/有弹性)。本文的重点是提取刚性词汇双语搭配。在我们的方法中,从机器可读字典中的习语和搭配中获得首选语法模式。从平行语料库中的对齐句子中提取匹配模式的搭配。本文提出了一种基于标点统计的句子对齐方法。基于标点的方法优于基于长度的方法,准确率接近98%。然后基于跨语言统计关联对得到的搭配进行匹配。整个搭配以及搭配中的单词之间的统计关联是将搭配与另一种语言中的对应搭配联系起来的一种方法。我们在一个非常大的汉英平行语料库上实现了该方法,取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bilingual Collocation Extraction Based on Syntactic and Statistical Analyses
In this paper, we describe an algorithm that employs syntactic and statistical analysis to extract bilingual collocations from a parallel corpus. Collocations are pervasive in all types of writing and can be found in phrases, chunks, proper names, idioms, and terminology. Therefore, automatic extraction of monolingual and bilingual collocations is important for many applications, including natural language generation, word sense disambiguation, machine translation, lexicography, and cross language information retrieval. Collocations can be classified as lexical or grammatical collocations. Lexical collocations exist between content words, while a grammatical collocation exists between a content word and function words or a syntactic structure. In addition, bilingual collocations can be rigid or flexible in both languages. Rigid collocation refers to words in a collocation must appear next to each other, or otherwise (flexible/elastic). We focus in this paper on extracting rigid lexical bilingual collocations. In our method, the preferred syntactic patterns are obtained from idioms and collocations in a machine-readable dictionary. Collocations matching the patterns are extracted from aligned sentences in a parallel corpus. We use a new alignment method based on punctuation statistics for sentence alignment. The punctuation-based approach is found to outperform the length-based approach with precision rates approaching 98%. The obtained collocations are subsequently matched up based on cross-linguistic statistical association. Statistical association between the whole collocations as well as words in collocations is used to link a collocation with its counterpart collocation in the other language. We implemented the proposed method on a very large Chinese-English parallel corpus and obtained satisfactory results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Cold Start Personalized Language Model Using Social Network Information Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars TQDL: Integrated Models for Cross-Language Document Retrieval Evaluation of TTS Systems in Intelligibility and Comprehension Tasks: a Case Study of HTS-2008 and Multisyn Synthesizers Effects of Combining Bilingual and Collocational Information on Translation of English and Chinese Verb-Noun Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1