{"title":"用于研究量子点薄膜的原位荧光和拉曼光谱装置的实现","authors":"Jurgen Dijkema","doi":"10.25609/sure.v4.2834","DOIUrl":null,"url":null,"abstract":"A new experimental setup for studying charge transfer in Quantum Dot (QD) films has been designed, built and tested. The setup combines three spectroscopic methods; Raman, Fluorescence and Absorption Spectroscopy. First data on a Cadmium Selenide (CdSe) films reveals that radiative emission quenches while charging, attributed to Auger-decay. When fully discharged, the emission remains partly quenched, indicating that not all electrons are removed. Since charge transfer is a fundamental process in solar cells, the setup could be essential for designing and optimizing cost efficient future QD based solar cells.","PeriodicalId":106615,"journal":{"name":"Student Undergraduate Research E-journal","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realization of an in-situ Fluorescence & Raman Spectroscopy Setup for studying Quantum Dot Films\",\"authors\":\"Jurgen Dijkema\",\"doi\":\"10.25609/sure.v4.2834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new experimental setup for studying charge transfer in Quantum Dot (QD) films has been designed, built and tested. The setup combines three spectroscopic methods; Raman, Fluorescence and Absorption Spectroscopy. First data on a Cadmium Selenide (CdSe) films reveals that radiative emission quenches while charging, attributed to Auger-decay. When fully discharged, the emission remains partly quenched, indicating that not all electrons are removed. Since charge transfer is a fundamental process in solar cells, the setup could be essential for designing and optimizing cost efficient future QD based solar cells.\",\"PeriodicalId\":106615,\"journal\":{\"name\":\"Student Undergraduate Research E-journal\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Student Undergraduate Research E-journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25609/sure.v4.2834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Student Undergraduate Research E-journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25609/sure.v4.2834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Realization of an in-situ Fluorescence & Raman Spectroscopy Setup for studying Quantum Dot Films
A new experimental setup for studying charge transfer in Quantum Dot (QD) films has been designed, built and tested. The setup combines three spectroscopic methods; Raman, Fluorescence and Absorption Spectroscopy. First data on a Cadmium Selenide (CdSe) films reveals that radiative emission quenches while charging, attributed to Auger-decay. When fully discharged, the emission remains partly quenched, indicating that not all electrons are removed. Since charge transfer is a fundamental process in solar cells, the setup could be essential for designing and optimizing cost efficient future QD based solar cells.