基于深度卷积神经网络的黑素瘤检测

L. Ichim, Razvan-Ionut Mitrica, D. Popescu
{"title":"基于深度卷积神经网络的黑素瘤检测","authors":"L. Ichim, Razvan-Ionut Mitrica, D. Popescu","doi":"10.1109/ATEE58038.2023.10108394","DOIUrl":null,"url":null,"abstract":"Melanoma represents one of the most aggressive and dangerous skin cancers, leading to mortality if not detected and treated in time. To help dermatologists in the early detection of melanoma, recently artificial intelligence techniques have been developed and systems based on neural networks are capable of detecting these lesions with high precision. The article proposes two implementations of such multi-network systems (assemblies of efficient neural networks) with good performance for melanoma detection from dermatoscopic images. The first model is one based on the fusion of the decisions of several neural networks considering the weights associated with the individual networks. The second model is one of Horizontal Voting based on the voting of some network models obtained from the basic networks, at various numbers of epochs. Both models give relatively good results, the last one having an accuracy of 94.06% in melanoma detection.","PeriodicalId":398894,"journal":{"name":"2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detection of Melanomas Using Ensembles of Deep Convolutional Neural Networks\",\"authors\":\"L. Ichim, Razvan-Ionut Mitrica, D. Popescu\",\"doi\":\"10.1109/ATEE58038.2023.10108394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Melanoma represents one of the most aggressive and dangerous skin cancers, leading to mortality if not detected and treated in time. To help dermatologists in the early detection of melanoma, recently artificial intelligence techniques have been developed and systems based on neural networks are capable of detecting these lesions with high precision. The article proposes two implementations of such multi-network systems (assemblies of efficient neural networks) with good performance for melanoma detection from dermatoscopic images. The first model is one based on the fusion of the decisions of several neural networks considering the weights associated with the individual networks. The second model is one of Horizontal Voting based on the voting of some network models obtained from the basic networks, at various numbers of epochs. Both models give relatively good results, the last one having an accuracy of 94.06% in melanoma detection.\",\"PeriodicalId\":398894,\"journal\":{\"name\":\"2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATEE58038.2023.10108394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATEE58038.2023.10108394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

黑色素瘤是最具侵袭性和最危险的皮肤癌之一,如果不及时发现和治疗,将导致死亡。为了帮助皮肤科医生早期发现黑色素瘤,最近开发了人工智能技术,基于神经网络的系统能够高精度地检测这些病变。本文提出了两种具有良好性能的多网络系统(高效神经网络的集合)的实现,用于从皮肤镜图像中检测黑色素瘤。第一个模型是基于多个神经网络决策的融合,考虑到与单个网络相关的权重。第二种模型是基于从基本网络中获得的一些网络模型在不同时代数上的投票的水平投票模型。两种模型都给出了相对较好的结果,最后一种模型在黑色素瘤检测中的准确率为94.06%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Melanomas Using Ensembles of Deep Convolutional Neural Networks
Melanoma represents one of the most aggressive and dangerous skin cancers, leading to mortality if not detected and treated in time. To help dermatologists in the early detection of melanoma, recently artificial intelligence techniques have been developed and systems based on neural networks are capable of detecting these lesions with high precision. The article proposes two implementations of such multi-network systems (assemblies of efficient neural networks) with good performance for melanoma detection from dermatoscopic images. The first model is one based on the fusion of the decisions of several neural networks considering the weights associated with the individual networks. The second model is one of Horizontal Voting based on the voting of some network models obtained from the basic networks, at various numbers of epochs. Both models give relatively good results, the last one having an accuracy of 94.06% in melanoma detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Secure Remote Connection for the Electronics Laboratory Based on Red Pitaya Board Numerical Simulation and Experimental Validation of a Magnetic Gearbox Amplifier Analyzing the Torque Transfer between Two In-Wheel Motors of an Electric Vehicle Drop impact experiments on cylindrical pillars A Study on Cognitive and Emotional Processes Carried Out through EEG Wave Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1