基于随机森林和梯度增强树技术的甘蔗产量等级预测

Phusanisa Charoen-Ung, Pradit Mittrapiyanuruk
{"title":"基于随机森林和梯度增强树技术的甘蔗产量等级预测","authors":"Phusanisa Charoen-Ung, Pradit Mittrapiyanuruk","doi":"10.1109/JCSSE.2018.8457391","DOIUrl":null,"url":null,"abstract":"This paper presents a machine learning based model for predicting the sugarcane yield grade of an individual plot. The dataset used in this work is obtained from a set of sugarcane plots around a sugar mill in Thailand. The features used in the prediction consist of the plot characteristics (soil type, plot area, groove width, plot yield/ yield grade of the last year), sugarcane characteristics (cane class and type), plot cultivation scheme (water resource type, irrigation method, epidemic control method, fertilizer type/formula) and rain volume. We use two predictive algorithms: (i) random forest classification, and (ii) gradient boosting tree classification. The accuracies of our machine learning based predictive methods are 71.83% and 71.64%, respectively. Meanwhile, the accuracies of two non-machine-learning baselines are 51.52% (using the actual yield of the last year as the prediction) and 65.50% (the target yield of each plot is manually predicted by human expert), respectively. This shows that our work is accurate enough to be applied for decision making of sugar mill operation planning.","PeriodicalId":338973,"journal":{"name":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Sugarcane Yield Grade Prediction using Random Forest and Gradient Boosting Tree Techniques\",\"authors\":\"Phusanisa Charoen-Ung, Pradit Mittrapiyanuruk\",\"doi\":\"10.1109/JCSSE.2018.8457391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a machine learning based model for predicting the sugarcane yield grade of an individual plot. The dataset used in this work is obtained from a set of sugarcane plots around a sugar mill in Thailand. The features used in the prediction consist of the plot characteristics (soil type, plot area, groove width, plot yield/ yield grade of the last year), sugarcane characteristics (cane class and type), plot cultivation scheme (water resource type, irrigation method, epidemic control method, fertilizer type/formula) and rain volume. We use two predictive algorithms: (i) random forest classification, and (ii) gradient boosting tree classification. The accuracies of our machine learning based predictive methods are 71.83% and 71.64%, respectively. Meanwhile, the accuracies of two non-machine-learning baselines are 51.52% (using the actual yield of the last year as the prediction) and 65.50% (the target yield of each plot is manually predicted by human expert), respectively. This shows that our work is accurate enough to be applied for decision making of sugar mill operation planning.\",\"PeriodicalId\":338973,\"journal\":{\"name\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2018.8457391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2018.8457391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了一种基于机器学习的甘蔗单田产量等级预测模型。这项工作中使用的数据集来自泰国一家糖厂周围的一组甘蔗地块。预测使用的特征包括地块特征(土壤类型、地块面积、沟槽宽度、上一年地块产量/产量等级)、甘蔗特征(甘蔗类别和类型)、地块栽培方案(水资源类型、灌溉方式、防治方法、肥料类型/配方)和降雨量。我们使用了两种预测算法:(i)随机森林分类,(ii)梯度增强树分类。我们基于机器学习的预测方法的准确率分别为71.83%和71.64%。同时,两条非机器学习基线的准确率分别为51.52%(使用去年的实际产量作为预测)和65.50%(每个地块的目标产量由人类专家手动预测)。这表明我们的工作具有足够的准确性,可用于糖厂生产计划的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sugarcane Yield Grade Prediction using Random Forest and Gradient Boosting Tree Techniques
This paper presents a machine learning based model for predicting the sugarcane yield grade of an individual plot. The dataset used in this work is obtained from a set of sugarcane plots around a sugar mill in Thailand. The features used in the prediction consist of the plot characteristics (soil type, plot area, groove width, plot yield/ yield grade of the last year), sugarcane characteristics (cane class and type), plot cultivation scheme (water resource type, irrigation method, epidemic control method, fertilizer type/formula) and rain volume. We use two predictive algorithms: (i) random forest classification, and (ii) gradient boosting tree classification. The accuracies of our machine learning based predictive methods are 71.83% and 71.64%, respectively. Meanwhile, the accuracies of two non-machine-learning baselines are 51.52% (using the actual yield of the last year as the prediction) and 65.50% (the target yield of each plot is manually predicted by human expert), respectively. This shows that our work is accurate enough to be applied for decision making of sugar mill operation planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Android Forensic and Security Assessment for Hospital and Stock-and-Trade Applications in Thailand Traffic State Prediction Using Convolutional Neural Network Development of Low-Cost in-the-Ear EEG Prototype JCSSE 2018 Title Page JCSSE 2018 Session Chairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1