{"title":"处理器失速周期聚合的静态分析","authors":"Jongeun Lee, Aviral Shrivastava","doi":"10.1145/1450135.1450143","DOIUrl":null,"url":null,"abstract":"Processor Idle Cycle Aggregation (PICA) is a promising approach for low power execution of processors, in which small memory stalls are aggregated to create a large one, and the processor is switched to low-power mode in it. We extend the previous proposed approach in two dimensions. i) We develop static analysis for the PICA technique and present optimum parameters for five common types of loops based on steady-state analysis. ii) We show that software only control is unable to guarantee its correctness in a varying runtime environment, potentially causing deadlocks. We enhance the robustness of PICA with minimal hardware extension, ensuring correct execution for any loops and parameters, which greatly facilitates exploration based parameter optimization. The combined use of our static analysis and exploration based fine-tuning makes the PICA technique applicable, to any memory-bound loop, with energy reduction. We validate our analytical models against simulation based optimization and also show through our experiments on embedded application benchmarks, that our technique can be applied to a wide range of loops with average 20% energy reductions compared to executions without PICA.","PeriodicalId":300268,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis","volume":"368 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Static analysis of processor stall cycle aggregation\",\"authors\":\"Jongeun Lee, Aviral Shrivastava\",\"doi\":\"10.1145/1450135.1450143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processor Idle Cycle Aggregation (PICA) is a promising approach for low power execution of processors, in which small memory stalls are aggregated to create a large one, and the processor is switched to low-power mode in it. We extend the previous proposed approach in two dimensions. i) We develop static analysis for the PICA technique and present optimum parameters for five common types of loops based on steady-state analysis. ii) We show that software only control is unable to guarantee its correctness in a varying runtime environment, potentially causing deadlocks. We enhance the robustness of PICA with minimal hardware extension, ensuring correct execution for any loops and parameters, which greatly facilitates exploration based parameter optimization. The combined use of our static analysis and exploration based fine-tuning makes the PICA technique applicable, to any memory-bound loop, with energy reduction. We validate our analytical models against simulation based optimization and also show through our experiments on embedded application benchmarks, that our technique can be applied to a wide range of loops with average 20% energy reductions compared to executions without PICA.\",\"PeriodicalId\":300268,\"journal\":{\"name\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"volume\":\"368 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1450135.1450143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1450135.1450143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Static analysis of processor stall cycle aggregation
Processor Idle Cycle Aggregation (PICA) is a promising approach for low power execution of processors, in which small memory stalls are aggregated to create a large one, and the processor is switched to low-power mode in it. We extend the previous proposed approach in two dimensions. i) We develop static analysis for the PICA technique and present optimum parameters for five common types of loops based on steady-state analysis. ii) We show that software only control is unable to guarantee its correctness in a varying runtime environment, potentially causing deadlocks. We enhance the robustness of PICA with minimal hardware extension, ensuring correct execution for any loops and parameters, which greatly facilitates exploration based parameter optimization. The combined use of our static analysis and exploration based fine-tuning makes the PICA technique applicable, to any memory-bound loop, with energy reduction. We validate our analytical models against simulation based optimization and also show through our experiments on embedded application benchmarks, that our technique can be applied to a wide range of loops with average 20% energy reductions compared to executions without PICA.