自动辅助机器人控制系统的设计

Xingyun He, Lei Shi
{"title":"自动辅助机器人控制系统的设计","authors":"Xingyun He, Lei Shi","doi":"10.1109/ICAR.2015.7251492","DOIUrl":null,"url":null,"abstract":"With the rapid advancements in robotic technologies, the increasing diversity of hardware and software in robot systems has a significant impact on the design of robot control systems. The structure of robots becomes more and more sophisticated with the growing of the number of receptors and effectors. Integrating receptors and effectors to agents in multi-agent robotic system in order to complete a set of tasks is an important problem demanding efficient solution in the robot control system design. We present a bin-packing algorithm for task allocation and a graph nodes consolidation approach for resource allocation. Our bin-packing algorithm can allocate the tasks to each agent to meet the constraints of the computational ability of agents and the execution time of tasks, while guaranteeing all tasks can be completed. The graph nodes consolidation algorithm allocates all the resources to agents while minimizing the number of connections between agents, leading to a communication-efficient system structure. The proposed algorithms have polynomial time complexity compared with constrained guess-check and brutal force methods for solving complex multi-agent resource allocation problems.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic aid for robot control system design\",\"authors\":\"Xingyun He, Lei Shi\",\"doi\":\"10.1109/ICAR.2015.7251492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid advancements in robotic technologies, the increasing diversity of hardware and software in robot systems has a significant impact on the design of robot control systems. The structure of robots becomes more and more sophisticated with the growing of the number of receptors and effectors. Integrating receptors and effectors to agents in multi-agent robotic system in order to complete a set of tasks is an important problem demanding efficient solution in the robot control system design. We present a bin-packing algorithm for task allocation and a graph nodes consolidation approach for resource allocation. Our bin-packing algorithm can allocate the tasks to each agent to meet the constraints of the computational ability of agents and the execution time of tasks, while guaranteeing all tasks can be completed. The graph nodes consolidation algorithm allocates all the resources to agents while minimizing the number of connections between agents, leading to a communication-efficient system structure. The proposed algorithms have polynomial time complexity compared with constrained guess-check and brutal force methods for solving complex multi-agent resource allocation problems.\",\"PeriodicalId\":432004,\"journal\":{\"name\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2015.7251492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2015.7251492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着机器人技术的飞速发展,机器人系统中硬件和软件的日益多样化对机器人控制系统的设计产生了重大影响。随着受体和效应器数量的增加,机器人的结构也越来越复杂。在多智能体机器人系统中,如何将感受器、效应器与智能体结合起来完成一系列任务是机器人控制系统设计中需要有效解决的一个重要问题。提出了一种任务分配的装箱算法和一种资源分配的图节点整合方法。我们的装箱算法可以在保证所有任务都能完成的前提下,将任务分配给每个agent,以满足agent计算能力和任务执行时间的约束。图节点整合算法将所有资源分配给代理,同时最大限度地减少了代理之间的连接数量,从而实现了高效通信的系统结构。在求解复杂的多智能体资源分配问题时,与约束猜测检查和野蛮力方法相比,该算法具有多项式时间复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic aid for robot control system design
With the rapid advancements in robotic technologies, the increasing diversity of hardware and software in robot systems has a significant impact on the design of robot control systems. The structure of robots becomes more and more sophisticated with the growing of the number of receptors and effectors. Integrating receptors and effectors to agents in multi-agent robotic system in order to complete a set of tasks is an important problem demanding efficient solution in the robot control system design. We present a bin-packing algorithm for task allocation and a graph nodes consolidation approach for resource allocation. Our bin-packing algorithm can allocate the tasks to each agent to meet the constraints of the computational ability of agents and the execution time of tasks, while guaranteeing all tasks can be completed. The graph nodes consolidation algorithm allocates all the resources to agents while minimizing the number of connections between agents, leading to a communication-efficient system structure. The proposed algorithms have polynomial time complexity compared with constrained guess-check and brutal force methods for solving complex multi-agent resource allocation problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the EMG-based torque estimation for humans coupled with a force-controlled elbow exoskeleton The KIT whole-body human motion database Visual matching of stroke order in robotic calligraphy Real-time motion adaptation using relative distance space representation Optimization of the switching surface for the simplest passive dynamic biped
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1