基于滑模控制的混合储能系统能量管理

Liu Fangcheng, Liu Jinjun, Zhang Bin, Zhang Hao-dong, H. S. Ul
{"title":"基于滑模控制的混合储能系统能量管理","authors":"Liu Fangcheng, Liu Jinjun, Zhang Bin, Zhang Hao-dong, H. S. Ul","doi":"10.1109/IPEMC.2012.6258891","DOIUrl":null,"url":null,"abstract":"The renewable energy has become the research focus in recent years with the environment-friendly characteristic. Integrating energy storage system to the renewable energy system can enhance the stability and reliability of the whole power system. As one of the core technologies, energy management of the hybrid energy storage system attracts more and more attention. Hybrid energy storage system can improve the performance of the storage device with the battery as the main power source and the super capacitor as the auxiliary power source. This paper presents a control strategy based on the DC voltage regulation via sliding mode control that changes the working conditions of battery and super capacitor. When the supercapacitor voltage stays in the working range as designed, it will work as the auxiliary power source to maintain the DC voltage. When the supercapacitor voltage reaches the upper limit or the lower limit, the battery will be controlled to maintain the DC bus voltage, making the super capacitor voltage remain in a proper range. The simulation model is established in MATLAB and simulation results verify the validity of the proposed control method.","PeriodicalId":236136,"journal":{"name":"Proceedings of The 7th International Power Electronics and Motion Control Conference","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Energy management of hybrid energy storage system (HESS) based on sliding mode control\",\"authors\":\"Liu Fangcheng, Liu Jinjun, Zhang Bin, Zhang Hao-dong, H. S. Ul\",\"doi\":\"10.1109/IPEMC.2012.6258891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The renewable energy has become the research focus in recent years with the environment-friendly characteristic. Integrating energy storage system to the renewable energy system can enhance the stability and reliability of the whole power system. As one of the core technologies, energy management of the hybrid energy storage system attracts more and more attention. Hybrid energy storage system can improve the performance of the storage device with the battery as the main power source and the super capacitor as the auxiliary power source. This paper presents a control strategy based on the DC voltage regulation via sliding mode control that changes the working conditions of battery and super capacitor. When the supercapacitor voltage stays in the working range as designed, it will work as the auxiliary power source to maintain the DC voltage. When the supercapacitor voltage reaches the upper limit or the lower limit, the battery will be controlled to maintain the DC bus voltage, making the super capacitor voltage remain in a proper range. The simulation model is established in MATLAB and simulation results verify the validity of the proposed control method.\",\"PeriodicalId\":236136,\"journal\":{\"name\":\"Proceedings of The 7th International Power Electronics and Motion Control Conference\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 7th International Power Electronics and Motion Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPEMC.2012.6258891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 7th International Power Electronics and Motion Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEMC.2012.6258891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

可再生能源以其环境友好的特点成为近年来的研究热点。将储能系统集成到可再生能源系统中,可以提高整个电力系统的稳定性和可靠性。混合储能系统的能量管理作为其核心技术之一,越来越受到人们的关注。以电池为主电源、超级电容器为辅电源的混合储能系统可以提高存储设备的性能。本文提出了一种基于滑模控制的直流电压调节策略,该策略通过改变电池和超级电容器的工作状态来实现。当超级电容的电压保持在设计的工作范围内时,它将作为辅助电源维持直流电压。当超级电容电压达到上限制值或下限制值时,控制蓄电池维持直流母线电压,使超级电容电压保持在合理范围内。在MATLAB中建立了仿真模型,仿真结果验证了所提控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy management of hybrid energy storage system (HESS) based on sliding mode control
The renewable energy has become the research focus in recent years with the environment-friendly characteristic. Integrating energy storage system to the renewable energy system can enhance the stability and reliability of the whole power system. As one of the core technologies, energy management of the hybrid energy storage system attracts more and more attention. Hybrid energy storage system can improve the performance of the storage device with the battery as the main power source and the super capacitor as the auxiliary power source. This paper presents a control strategy based on the DC voltage regulation via sliding mode control that changes the working conditions of battery and super capacitor. When the supercapacitor voltage stays in the working range as designed, it will work as the auxiliary power source to maintain the DC voltage. When the supercapacitor voltage reaches the upper limit or the lower limit, the battery will be controlled to maintain the DC bus voltage, making the super capacitor voltage remain in a proper range. The simulation model is established in MATLAB and simulation results verify the validity of the proposed control method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tri-state boost PFC converter with high input power factor Application and performance of a multilevel cascaded H-bridge converter on Static Var Generator Optimum sizing of non-grid-connected wind power system incorporating battery-exchange stations Real time selective harmonic minimization for multilevel inverters using genetic algorithm and artificial neural network angle generation Stability analysis of matrix converter with constant power loads and LC input filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1