{"title":"蛋白质结构预测的变分自编码器","authors":"F. Alam, Amarda Shehu","doi":"10.1145/3388440.3412471","DOIUrl":null,"url":null,"abstract":"The universe of protein structures contains many dark regions beyond the reach of experimental techniques. Yet, knowledge of the tertiary structure(s) that a protein employs to interact with partners in the cell is critical to understanding its biological function(s) and dysfunction(s). Great progress has been made in silico by methods that generate structures as part of an optimization. Recently, generative models based on neural networks are being debuted for generating protein structures. There is typically limited to showing that some generated structures are credible. In this paper, we go beyond this objective. We design variational autoencoders and evaluate whether they can replace existing, established methods. We evaluate various architectures via rigorous metrics in comparison with the popular Rosetta framework. The presented results are promising and show that once seeded with sufficient, physically-realistic structures, variational autoencoders are efficient models for generating realistic tertiary structures.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Variational Autoencoders for Protein Structure Prediction\",\"authors\":\"F. Alam, Amarda Shehu\",\"doi\":\"10.1145/3388440.3412471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The universe of protein structures contains many dark regions beyond the reach of experimental techniques. Yet, knowledge of the tertiary structure(s) that a protein employs to interact with partners in the cell is critical to understanding its biological function(s) and dysfunction(s). Great progress has been made in silico by methods that generate structures as part of an optimization. Recently, generative models based on neural networks are being debuted for generating protein structures. There is typically limited to showing that some generated structures are credible. In this paper, we go beyond this objective. We design variational autoencoders and evaluate whether they can replace existing, established methods. We evaluate various architectures via rigorous metrics in comparison with the popular Rosetta framework. The presented results are promising and show that once seeded with sufficient, physically-realistic structures, variational autoencoders are efficient models for generating realistic tertiary structures.\",\"PeriodicalId\":411338,\"journal\":{\"name\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388440.3412471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3412471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

蛋白质结构的宇宙包含许多实验技术无法触及的黑暗区域。然而,了解蛋白质用来与细胞中的伙伴相互作用的三级结构对于理解其生物学功能和功能障碍至关重要。通过生成结构作为优化的一部分的方法,在硅方面取得了很大的进展。最近,基于神经网络的生成模型首次出现,用于生成蛋白质结构。通常仅限于表明某些生成的结构是可信的。在本文中,我们超越了这一目标。我们设计变分自编码器,并评估它们是否可以取代现有的,既定的方法。我们通过严格的指标来评估各种架构,并与流行的Rosetta框架进行比较。所提出的结果是有希望的,并且表明,一旦播种了足够的,物理逼真的结构,变分自编码器是生成逼真的三级结构的有效模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variational Autoencoders for Protein Structure Prediction
The universe of protein structures contains many dark regions beyond the reach of experimental techniques. Yet, knowledge of the tertiary structure(s) that a protein employs to interact with partners in the cell is critical to understanding its biological function(s) and dysfunction(s). Great progress has been made in silico by methods that generate structures as part of an optimization. Recently, generative models based on neural networks are being debuted for generating protein structures. There is typically limited to showing that some generated structures are credible. In this paper, we go beyond this objective. We design variational autoencoders and evaluate whether they can replace existing, established methods. We evaluate various architectures via rigorous metrics in comparison with the popular Rosetta framework. The presented results are promising and show that once seeded with sufficient, physically-realistic structures, variational autoencoders are efficient models for generating realistic tertiary structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RA2Vec CanMod From Interatomic Distances to Protein Tertiary Structures with a Deep Convolutional Neural Network Prediction of Large for Gestational Age Infants in Overweight and Obese Women at Approximately 20 Gestational Weeks Using Patient Information for the Prediction of Caregiver Burden in Amyotrophic Lateral Sclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1