{"title":"基于速度控制器的水下航行器动力学数值试验","authors":"P. Herman","doi":"10.1109/RoMoCo.2019.8787347","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of underwater vehicle dynamic model evaluation based on a velocity tracking controller. The proposed strategy is composed of two steps: building of a velocity control algorithm in terms of the Nor-malized Generalized Velocity Components (NGVC), as a tool for the analysis, and its use for the dynamics investigation of the vehicle. The algorithm is expressed in terms of the transformed equations of motion arising from the inertia matrix decomposition. Consequently, it contains the system dynamics in the control gain matrices. This feature causes that not only the error convergence can be achieved (strictly related to the vehicle dynamics) but also some information about the system model is available. The method is suitable for fully actuated underwater vehicles and it can serve for numerical tests of the assumed model before a real experiment. The effectiveness of the proposed strategy, i.e. application of the controller for dynamics analysis, is shown via simulation on a 6 DOF underwater vehicle.","PeriodicalId":415070,"journal":{"name":"2019 12th International Workshop on Robot Motion and Control (RoMoCo)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Test of Underwater Vehicle Dynamics Using Velocity Controller\",\"authors\":\"P. Herman\",\"doi\":\"10.1109/RoMoCo.2019.8787347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses the problem of underwater vehicle dynamic model evaluation based on a velocity tracking controller. The proposed strategy is composed of two steps: building of a velocity control algorithm in terms of the Nor-malized Generalized Velocity Components (NGVC), as a tool for the analysis, and its use for the dynamics investigation of the vehicle. The algorithm is expressed in terms of the transformed equations of motion arising from the inertia matrix decomposition. Consequently, it contains the system dynamics in the control gain matrices. This feature causes that not only the error convergence can be achieved (strictly related to the vehicle dynamics) but also some information about the system model is available. The method is suitable for fully actuated underwater vehicles and it can serve for numerical tests of the assumed model before a real experiment. The effectiveness of the proposed strategy, i.e. application of the controller for dynamics analysis, is shown via simulation on a 6 DOF underwater vehicle.\",\"PeriodicalId\":415070,\"journal\":{\"name\":\"2019 12th International Workshop on Robot Motion and Control (RoMoCo)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th International Workshop on Robot Motion and Control (RoMoCo)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoMoCo.2019.8787347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th International Workshop on Robot Motion and Control (RoMoCo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoMoCo.2019.8787347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Test of Underwater Vehicle Dynamics Using Velocity Controller
The paper addresses the problem of underwater vehicle dynamic model evaluation based on a velocity tracking controller. The proposed strategy is composed of two steps: building of a velocity control algorithm in terms of the Nor-malized Generalized Velocity Components (NGVC), as a tool for the analysis, and its use for the dynamics investigation of the vehicle. The algorithm is expressed in terms of the transformed equations of motion arising from the inertia matrix decomposition. Consequently, it contains the system dynamics in the control gain matrices. This feature causes that not only the error convergence can be achieved (strictly related to the vehicle dynamics) but also some information about the system model is available. The method is suitable for fully actuated underwater vehicles and it can serve for numerical tests of the assumed model before a real experiment. The effectiveness of the proposed strategy, i.e. application of the controller for dynamics analysis, is shown via simulation on a 6 DOF underwater vehicle.