{"title":"高性能多像素相机的下变频模块架构","authors":"D. Palombini, M. Jankowski, E. Limiti","doi":"10.1155/2013/586158","DOIUrl":null,"url":null,"abstract":"Multipixel cameras represent an emerging topology for arrays receivers, improving speed and accuracy of both security scanning systems and radioastronomical sky surveys by means of a matrix of phased elements. Difficulties in the generation and proper distribution to each pixel of the local oscillator signal still limit their use to frequency ranges below a few GHz or at least seriously affect the complexity of the implementable cameras. This work presents a full comparison between two possible system architectures, alternatively based on LO frequency multiplication or subharmonic mixing strategies, aiming to overcome the aforesaid limitations: design and performance of two compact test vehicles in MMIC technology, both operating in the Q-band frequency range with ultrabroadband IF section, are reported.","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Downconverting Module Architectures for High Performance Multipixel Cameras\",\"authors\":\"D. Palombini, M. Jankowski, E. Limiti\",\"doi\":\"10.1155/2013/586158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multipixel cameras represent an emerging topology for arrays receivers, improving speed and accuracy of both security scanning systems and radioastronomical sky surveys by means of a matrix of phased elements. Difficulties in the generation and proper distribution to each pixel of the local oscillator signal still limit their use to frequency ranges below a few GHz or at least seriously affect the complexity of the implementable cameras. This work presents a full comparison between two possible system architectures, alternatively based on LO frequency multiplication or subharmonic mixing strategies, aiming to overcome the aforesaid limitations: design and performance of two compact test vehicles in MMIC technology, both operating in the Q-band frequency range with ultrabroadband IF section, are reported.\",\"PeriodicalId\":232251,\"journal\":{\"name\":\"International Journal of Microwave Science and Technology\",\"volume\":\"269 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/586158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/586158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Downconverting Module Architectures for High Performance Multipixel Cameras
Multipixel cameras represent an emerging topology for arrays receivers, improving speed and accuracy of both security scanning systems and radioastronomical sky surveys by means of a matrix of phased elements. Difficulties in the generation and proper distribution to each pixel of the local oscillator signal still limit their use to frequency ranges below a few GHz or at least seriously affect the complexity of the implementable cameras. This work presents a full comparison between two possible system architectures, alternatively based on LO frequency multiplication or subharmonic mixing strategies, aiming to overcome the aforesaid limitations: design and performance of two compact test vehicles in MMIC technology, both operating in the Q-band frequency range with ultrabroadband IF section, are reported.