J. Bates, F. Jonard, R. Bajracharya, H. Vereecken, C. Montzka
{"title":"基于UAS激光雷达的冬小麦生物量估算的机器学习","authors":"J. Bates, F. Jonard, R. Bajracharya, H. Vereecken, C. Montzka","doi":"10.5194/agile-giss-3-23-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Biomass is an important indicator in the ecological and management process that can now be estimated at higher temporal and spatial resolutions because of unmanned aircraft systems (UAS). LiDAR sensor technology has advanced enabling more compact sizes that can be integrated with UAS platforms. Its signals are capable of penetrating through vegetation canopies enabling the capture of more information along the plant structure. Separate studies have used LiDAR for crop height, rate of canopy penetrations as related to leaf area index (LAI), and signal intensity as an indicator of plant chlorophyll status or green area index (GAI). These LiDAR products are combined within a machine learning method such as an artificial neural network (ANN) to assess the potential in making accurate biomass estimations for winter wheat.\n","PeriodicalId":116168,"journal":{"name":"AGILE: GIScience Series","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning with UAS LiDAR for Winter Wheat Biomass Estimations\",\"authors\":\"J. Bates, F. Jonard, R. Bajracharya, H. Vereecken, C. Montzka\",\"doi\":\"10.5194/agile-giss-3-23-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Biomass is an important indicator in the ecological and management process that can now be estimated at higher temporal and spatial resolutions because of unmanned aircraft systems (UAS). LiDAR sensor technology has advanced enabling more compact sizes that can be integrated with UAS platforms. Its signals are capable of penetrating through vegetation canopies enabling the capture of more information along the plant structure. Separate studies have used LiDAR for crop height, rate of canopy penetrations as related to leaf area index (LAI), and signal intensity as an indicator of plant chlorophyll status or green area index (GAI). These LiDAR products are combined within a machine learning method such as an artificial neural network (ANN) to assess the potential in making accurate biomass estimations for winter wheat.\\n\",\"PeriodicalId\":116168,\"journal\":{\"name\":\"AGILE: GIScience Series\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGILE: GIScience Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/agile-giss-3-23-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGILE: GIScience Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/agile-giss-3-23-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning with UAS LiDAR for Winter Wheat Biomass Estimations
Abstract. Biomass is an important indicator in the ecological and management process that can now be estimated at higher temporal and spatial resolutions because of unmanned aircraft systems (UAS). LiDAR sensor technology has advanced enabling more compact sizes that can be integrated with UAS platforms. Its signals are capable of penetrating through vegetation canopies enabling the capture of more information along the plant structure. Separate studies have used LiDAR for crop height, rate of canopy penetrations as related to leaf area index (LAI), and signal intensity as an indicator of plant chlorophyll status or green area index (GAI). These LiDAR products are combined within a machine learning method such as an artificial neural network (ANN) to assess the potential in making accurate biomass estimations for winter wheat.