LPV系统的迭代学习控制与前馈:应用于位置相关运动系统

R. Rozario, T. Oomen, M. Steinbuch
{"title":"LPV系统的迭代学习控制与前馈:应用于位置相关运动系统","authors":"R. Rozario, T. Oomen, M. Steinbuch","doi":"10.23919/ACC.2017.7963491","DOIUrl":null,"url":null,"abstract":"Iterative Learning Control (ILC) enables performance improvement by learning from previous tasks. The aim of this paper is to develop an ILC approach for Linear Parameter Varying (LPV) systems to enable improved performance and increased convergence speed compared to the linear time-invariant approach. This is achieved through dedicated analysis and norm-optimal synthesis of LPV learning filters. Application to a position-dependent motion system shows a significant improvement in accuracy and convergence rate, thereby confirming the potential of the proposed approach.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Iterative Learning Control and feedforward for LPV systems: Applied to a position-dependent motion system\",\"authors\":\"R. Rozario, T. Oomen, M. Steinbuch\",\"doi\":\"10.23919/ACC.2017.7963491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iterative Learning Control (ILC) enables performance improvement by learning from previous tasks. The aim of this paper is to develop an ILC approach for Linear Parameter Varying (LPV) systems to enable improved performance and increased convergence speed compared to the linear time-invariant approach. This is achieved through dedicated analysis and norm-optimal synthesis of LPV learning filters. Application to a position-dependent motion system shows a significant improvement in accuracy and convergence rate, thereby confirming the potential of the proposed approach.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

迭代学习控制(ILC)通过从以前的任务中学习来提高性能。本文的目的是为线性参数变(LPV)系统开发一种ILC方法,与线性定常方法相比,可以改善性能并提高收敛速度。这是通过LPV学习滤波器的专门分析和规范优化合成来实现的。在位置相关运动系统中的应用表明,该方法在精度和收敛速度上有显著提高,从而证实了该方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iterative Learning Control and feedforward for LPV systems: Applied to a position-dependent motion system
Iterative Learning Control (ILC) enables performance improvement by learning from previous tasks. The aim of this paper is to develop an ILC approach for Linear Parameter Varying (LPV) systems to enable improved performance and increased convergence speed compared to the linear time-invariant approach. This is achieved through dedicated analysis and norm-optimal synthesis of LPV learning filters. Application to a position-dependent motion system shows a significant improvement in accuracy and convergence rate, thereby confirming the potential of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary and semi-plenary sessions Spatial Iterative Learning Control: Systems with input saturation Distributed Second Order Sliding Modes for Optimal Load Frequency Control Adaptive optimal observer design via approximate dynamic programming Nonlinear adaptive stabilization of a class of planar slow-fast systems at a non-hyperbolic point
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1