非均匀表面模糊划痕缺陷的鲁棒视觉检测

Haiyong Chen, Xiaofang Zhang, Jiali Liu, Huifang Zhao, Peng Yang
{"title":"非均匀表面模糊划痕缺陷的鲁棒视觉检测","authors":"Haiyong Chen, Xiaofang Zhang, Jiali Liu, Huifang Zhao, Peng Yang","doi":"10.23919/IConAC.2018.8749054","DOIUrl":null,"url":null,"abstract":"Scratch inspection has become a challenging problem in the detection of multicrystalline solar cells surface quality because the scratches in inhomogeneous textured surfaces are usually shallow and weak. Thus, this paper presents a novel framework for detecting vague scratches in the complex inhomogeneous surface texture of multicrystalline solar cell. Firstly, an enhanced texture energy measure is used for highlighting candidate scratch defcects information, and simultaneously suppressing inhomogeneous surface texture information. Then, a robust structural-texture decomposition method with an adaptive parameter is employed to capture the meaningful structure information from the enhanced image. Futheremore, an optimal threshold from a Otsu's threshold segmentation method is used to distinguish defect from the background. Finally, some experimental results have shown the proposed method can effectively detecte vague scratches in multicrystalline solar cell surface.","PeriodicalId":121030,"journal":{"name":"2018 24th International Conference on Automation and Computing (ICAC)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Visual Detection for Vague Scratches defect in inhomogeneous surface\",\"authors\":\"Haiyong Chen, Xiaofang Zhang, Jiali Liu, Huifang Zhao, Peng Yang\",\"doi\":\"10.23919/IConAC.2018.8749054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scratch inspection has become a challenging problem in the detection of multicrystalline solar cells surface quality because the scratches in inhomogeneous textured surfaces are usually shallow and weak. Thus, this paper presents a novel framework for detecting vague scratches in the complex inhomogeneous surface texture of multicrystalline solar cell. Firstly, an enhanced texture energy measure is used for highlighting candidate scratch defcects information, and simultaneously suppressing inhomogeneous surface texture information. Then, a robust structural-texture decomposition method with an adaptive parameter is employed to capture the meaningful structure information from the enhanced image. Futheremore, an optimal threshold from a Otsu's threshold segmentation method is used to distinguish defect from the background. Finally, some experimental results have shown the proposed method can effectively detecte vague scratches in multicrystalline solar cell surface.\",\"PeriodicalId\":121030,\"journal\":{\"name\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IConAC.2018.8749054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 24th International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IConAC.2018.8749054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于非均匀纹理表面的划痕通常较浅且较弱,因此划痕检测已成为多晶太阳能电池表面质量检测中的一个难题。因此,本文提出了一种用于多晶太阳能电池复杂非均匀表面纹理中模糊划痕检测的新框架。首先,采用增强的纹理能量度量来突出候选划痕缺陷信息,同时抑制非均匀表面纹理信息;然后,采用自适应参数的鲁棒结构-纹理分解方法从增强图像中捕获有意义的结构信息;在此基础上,利用Otsu阈值分割方法的最优阈值将缺陷与背景区分开来。实验结果表明,该方法可以有效地检测多晶太阳能电池表面的模糊划痕。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Visual Detection for Vague Scratches defect in inhomogeneous surface
Scratch inspection has become a challenging problem in the detection of multicrystalline solar cells surface quality because the scratches in inhomogeneous textured surfaces are usually shallow and weak. Thus, this paper presents a novel framework for detecting vague scratches in the complex inhomogeneous surface texture of multicrystalline solar cell. Firstly, an enhanced texture energy measure is used for highlighting candidate scratch defcects information, and simultaneously suppressing inhomogeneous surface texture information. Then, a robust structural-texture decomposition method with an adaptive parameter is employed to capture the meaningful structure information from the enhanced image. Futheremore, an optimal threshold from a Otsu's threshold segmentation method is used to distinguish defect from the background. Finally, some experimental results have shown the proposed method can effectively detecte vague scratches in multicrystalline solar cell surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Framework for Plagiarism Detection: A Case Study for Urdu Language Scale Detection Based on Maximum Entropy Principle Comparative Study of Eddy Current Pulsed and Long Pulse Optical Thermography for Defect Detection in Aluminium Plate Cost Minimization Control for Smart Electric Vehicle Car Parks Sliding Mode Control for Wearable Exoskeleton based on Disturbance Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1