Shangbin Feng, Herun Wan, Ningnan Wang, Minnan Luo
{"title":"BotRGCN: Twitter机器人检测与关系图卷积网络","authors":"Shangbin Feng, Herun Wan, Ningnan Wang, Minnan Luo","doi":"10.1145/3487351.3488336","DOIUrl":null,"url":null,"abstract":"Twitter bot detection is an important and challenging task. Existing bot detection measures fail to address the challenge of community and disguise, falling short of detecting bots that disguise as genuine users and attack collectively. To address these two challenges of Twitter bot detection, we propose BotRGCN, which is short for Bot detection with Relational Graph Convolutional Networks. BotRGCN addresses the challenge of community by constructing a heterogeneous graph from follow relationships and applies relational graph convolutional networks. Apart from that, BotRGCN makes use of multi-modal user semantic and property information to avoid feature engineering and augment its ability to capture bots with diversified disguise. Extensive experiments demonstrate that BotRGCN outperforms competitive baselines on a comprehensive benchmark TwiBot-20 which provides follow relationships.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"BotRGCN: Twitter bot detection with relational graph convolutional networks\",\"authors\":\"Shangbin Feng, Herun Wan, Ningnan Wang, Minnan Luo\",\"doi\":\"10.1145/3487351.3488336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter bot detection is an important and challenging task. Existing bot detection measures fail to address the challenge of community and disguise, falling short of detecting bots that disguise as genuine users and attack collectively. To address these two challenges of Twitter bot detection, we propose BotRGCN, which is short for Bot detection with Relational Graph Convolutional Networks. BotRGCN addresses the challenge of community by constructing a heterogeneous graph from follow relationships and applies relational graph convolutional networks. Apart from that, BotRGCN makes use of multi-modal user semantic and property information to avoid feature engineering and augment its ability to capture bots with diversified disguise. Extensive experiments demonstrate that BotRGCN outperforms competitive baselines on a comprehensive benchmark TwiBot-20 which provides follow relationships.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3488336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BotRGCN: Twitter bot detection with relational graph convolutional networks
Twitter bot detection is an important and challenging task. Existing bot detection measures fail to address the challenge of community and disguise, falling short of detecting bots that disguise as genuine users and attack collectively. To address these two challenges of Twitter bot detection, we propose BotRGCN, which is short for Bot detection with Relational Graph Convolutional Networks. BotRGCN addresses the challenge of community by constructing a heterogeneous graph from follow relationships and applies relational graph convolutional networks. Apart from that, BotRGCN makes use of multi-modal user semantic and property information to avoid feature engineering and augment its ability to capture bots with diversified disguise. Extensive experiments demonstrate that BotRGCN outperforms competitive baselines on a comprehensive benchmark TwiBot-20 which provides follow relationships.