基于密度的聚类和径向基函数建模来生成信用卡欺诈评分

V. Hanagandi, A. Dhar, K. Buescher
{"title":"基于密度的聚类和径向基函数建模来生成信用卡欺诈评分","authors":"V. Hanagandi, A. Dhar, K. Buescher","doi":"10.1109/CIFER.1996.501848","DOIUrl":null,"url":null,"abstract":"Historical information on credit card transactions can be used to generate a fraud score which can then be used to reduce credit card fraud. The report describes a fraud-nonfraud classification methodology using a radial basis function network (RBFN) with a density based clustering approach. The input data is transformed into the cardinal component space and clustering as well as RBFN modeling is done using a few cardinal components. The methodology has been tested on a fraud detection problem and the preliminary results obtained are satisfactory.","PeriodicalId":378565,"journal":{"name":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Density-based clustering and radial basis function modeling to generate credit card fraud scores\",\"authors\":\"V. Hanagandi, A. Dhar, K. Buescher\",\"doi\":\"10.1109/CIFER.1996.501848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Historical information on credit card transactions can be used to generate a fraud score which can then be used to reduce credit card fraud. The report describes a fraud-nonfraud classification methodology using a radial basis function network (RBFN) with a density based clustering approach. The input data is transformed into the cardinal component space and clustering as well as RBFN modeling is done using a few cardinal components. The methodology has been tested on a fraud detection problem and the preliminary results obtained are satisfactory.\",\"PeriodicalId\":378565,\"journal\":{\"name\":\"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIFER.1996.501848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFER.1996.501848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

信用卡交易的历史信息可用于生成欺诈评分,然后可用于减少信用卡欺诈。该报告描述了一种使用径向基函数网络(RBFN)和基于密度的聚类方法的欺诈-非欺诈分类方法。将输入数据转换为基数分量空间,并使用几个基数分量完成聚类和RBFN建模。该方法已在一个欺诈检测问题上进行了测试,初步结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Density-based clustering and radial basis function modeling to generate credit card fraud scores
Historical information on credit card transactions can be used to generate a fraud score which can then be used to reduce credit card fraud. The report describes a fraud-nonfraud classification methodology using a radial basis function network (RBFN) with a density based clustering approach. The input data is transformed into the cardinal component space and clustering as well as RBFN modeling is done using a few cardinal components. The methodology has been tested on a fraud detection problem and the preliminary results obtained are satisfactory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimisation of an investment in South East Asian country funds investment company Self-organizing fuzzy and MLP approaches to detecting fraudulent financial reporting Density-based clustering and radial basis function modeling to generate credit card fraud scores The gene expression messy genetic algorithm for financial applications Problems with Monte Carlo simulation in the pricing of contingent claims
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1