加性失真测量误差相关系数的指数校正

Jun Zhang, Zhuoer Xu
{"title":"加性失真测量误差相关系数的指数校正","authors":"Jun Zhang, Zhuoer Xu","doi":"10.1002/sam.11509","DOIUrl":null,"url":null,"abstract":"This paper studies the estimation of correlation coefficient between unobserved variables of interest. These unobservable variables are distorted in an additive fashion by an observed confounding variable. We propose a new identifiability condition by using the exponential calibration to obtain calibrated variables and propose a direct‐plug‐in estimator for the correlation coefficient. We show that the direct‐plug‐in estimator is asymptotically efficient. Next, we suggest an asymptotic normal approximation and an empirical likelihood‐based statistic to construct the confidence intervals. Last, we propose several test statistics for testing whether the true correlation coefficient is zero or not. The asymptotic properties of the proposed test statistics are examined. We conduct Monte Carlo simulation experiments to examine the performance of the proposed estimators and test statistics. These methods are applied to analyze a temperature forecast data set for an illustration.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Exponential calibration for correlation coefficient with additive distortion measurement errors\",\"authors\":\"Jun Zhang, Zhuoer Xu\",\"doi\":\"10.1002/sam.11509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the estimation of correlation coefficient between unobserved variables of interest. These unobservable variables are distorted in an additive fashion by an observed confounding variable. We propose a new identifiability condition by using the exponential calibration to obtain calibrated variables and propose a direct‐plug‐in estimator for the correlation coefficient. We show that the direct‐plug‐in estimator is asymptotically efficient. Next, we suggest an asymptotic normal approximation and an empirical likelihood‐based statistic to construct the confidence intervals. Last, we propose several test statistics for testing whether the true correlation coefficient is zero or not. The asymptotic properties of the proposed test statistics are examined. We conduct Monte Carlo simulation experiments to examine the performance of the proposed estimators and test statistics. These methods are applied to analyze a temperature forecast data set for an illustration.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了未观测变量间相关系数的估计。这些不可观察的变量被观察到的混淆变量以相加的方式扭曲。我们提出了一个新的可辨识性条件,利用指数校准来获得校准变量,并提出了相关系数的直接插入估计。我们证明了直接插入估计量是渐近有效的。接下来,我们提出了一个渐近正态近似和一个基于经验似然的统计来构建置信区间。最后,我们提出了几个检验统计量来检验真实相关系数是否为零。检验了所提出的检验统计量的渐近性质。我们进行蒙特卡罗模拟实验,以检查所提出的估计器的性能和测试统计量。应用这些方法对一组温度预报数据进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exponential calibration for correlation coefficient with additive distortion measurement errors
This paper studies the estimation of correlation coefficient between unobserved variables of interest. These unobservable variables are distorted in an additive fashion by an observed confounding variable. We propose a new identifiability condition by using the exponential calibration to obtain calibrated variables and propose a direct‐plug‐in estimator for the correlation coefficient. We show that the direct‐plug‐in estimator is asymptotically efficient. Next, we suggest an asymptotic normal approximation and an empirical likelihood‐based statistic to construct the confidence intervals. Last, we propose several test statistics for testing whether the true correlation coefficient is zero or not. The asymptotic properties of the proposed test statistics are examined. We conduct Monte Carlo simulation experiments to examine the performance of the proposed estimators and test statistics. These methods are applied to analyze a temperature forecast data set for an illustration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural interval‐censored survival regression with feature selection Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics Confidence bounds for threshold similarity graph in random variable network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1