Pragnesh V. Patel, J. A. Kumar, M. Sarkar, S. Nagaraj
{"title":"在侵入性脑机接口应用中追踪超宽带传输的行为","authors":"Pragnesh V. Patel, J. A. Kumar, M. Sarkar, S. Nagaraj","doi":"10.1109/BSN.2016.7516260","DOIUrl":null,"url":null,"abstract":"Ultra wideband (UWB) radio technology has been shown to have tremendous potential to support certain Brain Computer Interface (BCI) applications. To implant UWB transmitters inside a human brain to transmit ECoG signals from the neurons in the brain (collected by bio-implantable electrodes) to stimulators residing on the spinal cord or on muscles at different parts of the body (non-invasive), almost sounds like a sci-fi story. In order to make this sci-fi dream a reality, many aspects of the problem needs to be addressed. In this paper, we attempt to study one such aspect. Specifically, we study the behavior of UWB transmissions through the human brain, primarily focusing on the behavior of the signal when it traverses through human blood in the brain before it can be received by the receiver planted on the surface of the human body (spinal cord, upper limbs, etc). We have performed in-depth numerical analysis through theoretical and experimental procedures which has helped us gain insight into the attenuation, delay and transmit power properties of the signal at different frequencies within the UWB spectrum. We present these results in this paper. So far, there are no channel models available for UWB transmissions inside the human body. Our work, is a step in that direction.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tracking the behavior of UWB transmissions in invasive BCI applications\",\"authors\":\"Pragnesh V. Patel, J. A. Kumar, M. Sarkar, S. Nagaraj\",\"doi\":\"10.1109/BSN.2016.7516260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra wideband (UWB) radio technology has been shown to have tremendous potential to support certain Brain Computer Interface (BCI) applications. To implant UWB transmitters inside a human brain to transmit ECoG signals from the neurons in the brain (collected by bio-implantable electrodes) to stimulators residing on the spinal cord or on muscles at different parts of the body (non-invasive), almost sounds like a sci-fi story. In order to make this sci-fi dream a reality, many aspects of the problem needs to be addressed. In this paper, we attempt to study one such aspect. Specifically, we study the behavior of UWB transmissions through the human brain, primarily focusing on the behavior of the signal when it traverses through human blood in the brain before it can be received by the receiver planted on the surface of the human body (spinal cord, upper limbs, etc). We have performed in-depth numerical analysis through theoretical and experimental procedures which has helped us gain insight into the attenuation, delay and transmit power properties of the signal at different frequencies within the UWB spectrum. We present these results in this paper. So far, there are no channel models available for UWB transmissions inside the human body. Our work, is a step in that direction.\",\"PeriodicalId\":205735,\"journal\":{\"name\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"218 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2016.7516260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tracking the behavior of UWB transmissions in invasive BCI applications
Ultra wideband (UWB) radio technology has been shown to have tremendous potential to support certain Brain Computer Interface (BCI) applications. To implant UWB transmitters inside a human brain to transmit ECoG signals from the neurons in the brain (collected by bio-implantable electrodes) to stimulators residing on the spinal cord or on muscles at different parts of the body (non-invasive), almost sounds like a sci-fi story. In order to make this sci-fi dream a reality, many aspects of the problem needs to be addressed. In this paper, we attempt to study one such aspect. Specifically, we study the behavior of UWB transmissions through the human brain, primarily focusing on the behavior of the signal when it traverses through human blood in the brain before it can be received by the receiver planted on the surface of the human body (spinal cord, upper limbs, etc). We have performed in-depth numerical analysis through theoretical and experimental procedures which has helped us gain insight into the attenuation, delay and transmit power properties of the signal at different frequencies within the UWB spectrum. We present these results in this paper. So far, there are no channel models available for UWB transmissions inside the human body. Our work, is a step in that direction.