基于改进多尺度视网膜的杂交花授粉优化血细胞显微图像增强

Shahd T. Mohamed, H. M. Ebeid, A. Hassanien, M. Tolba
{"title":"基于改进多尺度视网膜的杂交花授粉优化血细胞显微图像增强","authors":"Shahd T. Mohamed, H. M. Ebeid, A. Hassanien, M. Tolba","doi":"10.1109/ICRCICN.2017.8234511","DOIUrl":null,"url":null,"abstract":"Multi-Scale Retinex (MSR) algorithm enhances images that are taken in nonlinear lighting conditions. In this paper, we propose an automated approach for image enhancement using MSR and Flower Pollination Algorithm (FPA) to select the optimal weights to the different scales of Gaussian filters from the desired image for MSR. The experiments are carried out using blood cell microscopic imaging to investigate the MSR and FPA. The proposed method are compared against the state-of-the-art swarms algorithms; Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Cuckoo search (CS) and standard MSR in the aspect of the mean, standard deviation (SD), peak to signal-to-noise ratio (PSNR) and the root mean square error (RMSE). The experiment results showed that the proposed hybrid algorithm proves itself to be robust and effective through experimental results and outperforms the state-of-the-art algorithms.","PeriodicalId":166298,"journal":{"name":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A hybrid flower pollination optimization based modified multi-scale retinex for blood cell microscopic image enhancement\",\"authors\":\"Shahd T. Mohamed, H. M. Ebeid, A. Hassanien, M. Tolba\",\"doi\":\"10.1109/ICRCICN.2017.8234511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-Scale Retinex (MSR) algorithm enhances images that are taken in nonlinear lighting conditions. In this paper, we propose an automated approach for image enhancement using MSR and Flower Pollination Algorithm (FPA) to select the optimal weights to the different scales of Gaussian filters from the desired image for MSR. The experiments are carried out using blood cell microscopic imaging to investigate the MSR and FPA. The proposed method are compared against the state-of-the-art swarms algorithms; Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Cuckoo search (CS) and standard MSR in the aspect of the mean, standard deviation (SD), peak to signal-to-noise ratio (PSNR) and the root mean square error (RMSE). The experiment results showed that the proposed hybrid algorithm proves itself to be robust and effective through experimental results and outperforms the state-of-the-art algorithms.\",\"PeriodicalId\":166298,\"journal\":{\"name\":\"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRCICN.2017.8234511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2017.8234511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

多尺度Retinex (MSR)算法可以增强在非线性光照条件下拍摄的图像。在本文中,我们提出了一种使用MSR和花授粉算法(FPA)的自动图像增强方法,从MSR所需的图像中选择不同尺度高斯滤波器的最优权重。实验采用血细胞显微成像技术研究了微磁共振和FPA。将该方法与最先进的群算法进行了比较;粒子群算法(PSO)、人工蜂群算法(ABC)、杜鹃搜索算法(CS)和标准MSR算法在均值、标准差(SD)、峰值信噪比(PSNR)和均方根误差(RMSE)方面进行了比较。实验结果表明,本文提出的混合算法鲁棒性好、有效性好,优于现有的混合算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid flower pollination optimization based modified multi-scale retinex for blood cell microscopic image enhancement
Multi-Scale Retinex (MSR) algorithm enhances images that are taken in nonlinear lighting conditions. In this paper, we propose an automated approach for image enhancement using MSR and Flower Pollination Algorithm (FPA) to select the optimal weights to the different scales of Gaussian filters from the desired image for MSR. The experiments are carried out using blood cell microscopic imaging to investigate the MSR and FPA. The proposed method are compared against the state-of-the-art swarms algorithms; Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Cuckoo search (CS) and standard MSR in the aspect of the mean, standard deviation (SD), peak to signal-to-noise ratio (PSNR) and the root mean square error (RMSE). The experiment results showed that the proposed hybrid algorithm proves itself to be robust and effective through experimental results and outperforms the state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RGB image encryption using hyper chaotic system Characterisation of wireless network traffic: Fractality and stationarity Security risk assessment in online social networking: A detailed survey Optimalized hydel-thermic operative planning using IRECGA Designing an enhanced ZRP algorithm for MANET and simulation using OPNET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1