识别混合系统的智能技术

Juraj Števek, A. Szucs, M. Kvasnica, S. Kozák, M. Fikar
{"title":"识别混合系统的智能技术","authors":"Juraj Števek, A. Szucs, M. Kvasnica, S. Kozák, M. Fikar","doi":"10.1109/SAMI.2012.6208995","DOIUrl":null,"url":null,"abstract":"The paper describes a system identification method for a nonlinear system based on a multi-point linear approximation. We show that under mild assumptions, the task can be transformed into a series of one-dimensional approximations, for which we propose an efficient solution method based on solving simple nonlinear programs (NLPs). The approach provides identification of nonlinear systems in a polynomial model structure (ARX, OE, BJ) from input-output data. The approximation is based on a neural network modelling procedure. The proposed modelling procedure is characterized by fast training, adjustable accuracy and reduced complexity of the final model. The modelling technique is widely applicable in automotive, power electronics, computer graphics, etc.","PeriodicalId":158731,"journal":{"name":"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Smart technique for identifying hybrid systems\",\"authors\":\"Juraj Števek, A. Szucs, M. Kvasnica, S. Kozák, M. Fikar\",\"doi\":\"10.1109/SAMI.2012.6208995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes a system identification method for a nonlinear system based on a multi-point linear approximation. We show that under mild assumptions, the task can be transformed into a series of one-dimensional approximations, for which we propose an efficient solution method based on solving simple nonlinear programs (NLPs). The approach provides identification of nonlinear systems in a polynomial model structure (ARX, OE, BJ) from input-output data. The approximation is based on a neural network modelling procedure. The proposed modelling procedure is characterized by fast training, adjustable accuracy and reduced complexity of the final model. The modelling technique is widely applicable in automotive, power electronics, computer graphics, etc.\",\"PeriodicalId\":158731,\"journal\":{\"name\":\"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2012.6208995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2012.6208995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文描述了一种基于多点线性逼近的非线性系统辨识方法。我们证明,在温和的假设下,任务可以转化为一系列一维近似,为此我们提出了一种基于求解简单非线性规划(nlp)的有效求解方法。该方法提供了从输入输出数据中识别多项式模型结构(ARX, OE, BJ)中的非线性系统。该近似是基于神经网络建模程序。所提出的建模方法具有训练速度快、精度可调和降低最终模型复杂度的特点。该建模技术广泛应用于汽车、电力电子、计算机图形学等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart technique for identifying hybrid systems
The paper describes a system identification method for a nonlinear system based on a multi-point linear approximation. We show that under mild assumptions, the task can be transformed into a series of one-dimensional approximations, for which we propose an efficient solution method based on solving simple nonlinear programs (NLPs). The approach provides identification of nonlinear systems in a polynomial model structure (ARX, OE, BJ) from input-output data. The approximation is based on a neural network modelling procedure. The proposed modelling procedure is characterized by fast training, adjustable accuracy and reduced complexity of the final model. The modelling technique is widely applicable in automotive, power electronics, computer graphics, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preparing databases for network traffic monitoring Name service redundancy in robot technology middleware Classification of LHC beam loss spikes using Support Vector Machines Extraction of web discussion texts for opinion analysis MonAMI platform, trials and results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1