{"title":"旋转盘-主轴系统的自由振动与稳定性","authors":"Pushkaraj J. Sathe, R. Parker","doi":"10.1115/imece1998-0210","DOIUrl":null,"url":null,"abstract":"\n This work examines the free vibration and stability of a rotating flexible disk-spindle system. The extended operator formulation (Parker, 1997) is exploited to discretize the system using Galerkin’s method. The coupled vibration modes of the system consist of disk modes, in which the disk dominates the system deformation, and spindle modes, in which the spindle dominates the system deformation. Both the natural frequencies and vibration modes are strongly affected by disk flexibility. If the membrane stresses associated with disk rotation are neglected then the system exhibits flutter instabilities, but these instabilities are not present when membrane stresses are included. Natural frequency veering between disk and spindle frequencies is prominent at low speeds and substantially affects the spectrum and stability. No veering is observed at high speeds where rotational stress stiffening diminishes disk-spindle coupling and causes the natural frequencies to converge to those of a rotating spindle carrying a rigid disk. Changes to the vibration modes are examined in terms of a strain energy ratio measuring the contribution of the disk strain energy to the total modal strain energy.","PeriodicalId":414918,"journal":{"name":"9th International Symposium on Information Storage and Processing Systems","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free Vibration and Stability of a Rotating Disk-Spindle System\",\"authors\":\"Pushkaraj J. Sathe, R. Parker\",\"doi\":\"10.1115/imece1998-0210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work examines the free vibration and stability of a rotating flexible disk-spindle system. The extended operator formulation (Parker, 1997) is exploited to discretize the system using Galerkin’s method. The coupled vibration modes of the system consist of disk modes, in which the disk dominates the system deformation, and spindle modes, in which the spindle dominates the system deformation. Both the natural frequencies and vibration modes are strongly affected by disk flexibility. If the membrane stresses associated with disk rotation are neglected then the system exhibits flutter instabilities, but these instabilities are not present when membrane stresses are included. Natural frequency veering between disk and spindle frequencies is prominent at low speeds and substantially affects the spectrum and stability. No veering is observed at high speeds where rotational stress stiffening diminishes disk-spindle coupling and causes the natural frequencies to converge to those of a rotating spindle carrying a rigid disk. Changes to the vibration modes are examined in terms of a strain energy ratio measuring the contribution of the disk strain energy to the total modal strain energy.\",\"PeriodicalId\":414918,\"journal\":{\"name\":\"9th International Symposium on Information Storage and Processing Systems\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Symposium on Information Storage and Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1998-0210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Symposium on Information Storage and Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1998-0210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Free Vibration and Stability of a Rotating Disk-Spindle System
This work examines the free vibration and stability of a rotating flexible disk-spindle system. The extended operator formulation (Parker, 1997) is exploited to discretize the system using Galerkin’s method. The coupled vibration modes of the system consist of disk modes, in which the disk dominates the system deformation, and spindle modes, in which the spindle dominates the system deformation. Both the natural frequencies and vibration modes are strongly affected by disk flexibility. If the membrane stresses associated with disk rotation are neglected then the system exhibits flutter instabilities, but these instabilities are not present when membrane stresses are included. Natural frequency veering between disk and spindle frequencies is prominent at low speeds and substantially affects the spectrum and stability. No veering is observed at high speeds where rotational stress stiffening diminishes disk-spindle coupling and causes the natural frequencies to converge to those of a rotating spindle carrying a rigid disk. Changes to the vibration modes are examined in terms of a strain energy ratio measuring the contribution of the disk strain energy to the total modal strain energy.