拉曼微光谱数据信息特征选择方法

A. Karmenyan, D. Vrazhnov, E. Sandykova, E. Perevedentseva, A. Krivokharchenko, V. Nadtochenko, Chia-Liang Cheng, T. Kabanova, Tatyana E. Malakhova
{"title":"拉曼微光谱数据信息特征选择方法","authors":"A. Karmenyan, D. Vrazhnov, E. Sandykova, E. Perevedentseva, A. Krivokharchenko, V. Nadtochenko, Chia-Liang Cheng, T. Kabanova, Tatyana E. Malakhova","doi":"10.1117/12.2613966","DOIUrl":null,"url":null,"abstract":"The paper presents an algorithm based on low order statistics for the informative feature extraction for Raman spectroscopy data. The proposed method was tested on mouse preimplantation embryos Raman spectra. Both supervised and unsupervised machine learning methods were applied to selected the most informative features to test the separability of the processed data.","PeriodicalId":205170,"journal":{"name":"Atomic and Molecular Pulsed Lasers","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Informative feature selection method for Raman micro-spectroscopy data\",\"authors\":\"A. Karmenyan, D. Vrazhnov, E. Sandykova, E. Perevedentseva, A. Krivokharchenko, V. Nadtochenko, Chia-Liang Cheng, T. Kabanova, Tatyana E. Malakhova\",\"doi\":\"10.1117/12.2613966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an algorithm based on low order statistics for the informative feature extraction for Raman spectroscopy data. The proposed method was tested on mouse preimplantation embryos Raman spectra. Both supervised and unsupervised machine learning methods were applied to selected the most informative features to test the separability of the processed data.\",\"PeriodicalId\":205170,\"journal\":{\"name\":\"Atomic and Molecular Pulsed Lasers\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic and Molecular Pulsed Lasers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2613966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic and Molecular Pulsed Lasers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2613966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于低阶统计量的拉曼光谱信息特征提取算法。该方法在小鼠着床前胚胎上进行了拉曼光谱实验。应用监督和无监督机器学习方法来选择最具信息量的特征来测试处理数据的可分离性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Informative feature selection method for Raman micro-spectroscopy data
The paper presents an algorithm based on low order statistics for the informative feature extraction for Raman spectroscopy data. The proposed method was tested on mouse preimplantation embryos Raman spectra. Both supervised and unsupervised machine learning methods were applied to selected the most informative features to test the separability of the processed data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Channeling of femtosecond laser pulses in the turbulent atmosphere DNA destruction under the influence of VUV radiation Peculiarities of apokamp formation from electrode with ceramic coating Informative feature selection method for Raman micro-spectroscopy data Modeling the propagation of high-power femtosecond laser radiation through an aerosol with nonlinear effects occurring in it
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1