具有激光束漂移补偿的紧凑型激光波长计的构造

Yindi Cai, B. Feng, K. Fan
{"title":"具有激光束漂移补偿的紧凑型激光波长计的构造","authors":"Yindi Cai, B. Feng, K. Fan","doi":"10.1117/12.2509514","DOIUrl":null,"url":null,"abstract":"A compact diffracting grating based laser wavemeter is constructed in this paper. Wavelength is the length unit of laser interferometers, it must be very accurate and stable during the length measurement. An air sensor, which is employed to correct the air refractive index through an empirical equation, is essential in laser interferometers. However, the empirical equation is suffered from indirect measurement, the correction accuracy is depended on the measurement accuracy of the air sensor. Slow response is other disadvantages of the empirical equation. Additional, the empirical equation is not applicable to correct the laser diode wavelength. Therefore, a direct measurement method of laser diode wavelength, based on the diffraction principle, is proposed and a compact, low-cost and simple wavemeter is constructed in this paper. Laser beam drift is recognized as one of critical error source in laser measurement. Therefore, a novel laser beam drift active compensation method is thus proposed in this study that integrates the functions of automatic type angle turning and PID controlled fine angle motion. After introducing the principles of wavelength measurement and laser beam drift compensation, the effectiveness of the wavemeter in real-time wavelength measurement is well verified by the experimental results.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Construction of a compact laser wavemeter with compensation of laser beam drift\",\"authors\":\"Yindi Cai, B. Feng, K. Fan\",\"doi\":\"10.1117/12.2509514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compact diffracting grating based laser wavemeter is constructed in this paper. Wavelength is the length unit of laser interferometers, it must be very accurate and stable during the length measurement. An air sensor, which is employed to correct the air refractive index through an empirical equation, is essential in laser interferometers. However, the empirical equation is suffered from indirect measurement, the correction accuracy is depended on the measurement accuracy of the air sensor. Slow response is other disadvantages of the empirical equation. Additional, the empirical equation is not applicable to correct the laser diode wavelength. Therefore, a direct measurement method of laser diode wavelength, based on the diffraction principle, is proposed and a compact, low-cost and simple wavemeter is constructed in this paper. Laser beam drift is recognized as one of critical error source in laser measurement. Therefore, a novel laser beam drift active compensation method is thus proposed in this study that integrates the functions of automatic type angle turning and PID controlled fine angle motion. After introducing the principles of wavelength measurement and laser beam drift compensation, the effectiveness of the wavemeter in real-time wavelength measurement is well verified by the experimental results.\",\"PeriodicalId\":115119,\"journal\":{\"name\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2509514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2509514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文构造了一种紧凑的衍射光栅激光波长计。波长是激光干涉仪的长度单位,在测量长度时必须非常精确和稳定。空气传感器是激光干涉仪中必不可少的一种传感器,它通过经验方程来校正空气折射率。然而,经验方程是间接测量的,其修正精度取决于空气传感器的测量精度。响应慢是经验方程的另一个缺点。另外,经验方程不适用于激光二极管波长的校正。因此,本文提出了一种基于衍射原理的激光二极管波长直接测量方法,并构造了一种结构紧凑、成本低、结构简单的波长计。激光束漂移是激光测量中公认的重要误差源之一。因此,本研究提出了一种新型的激光光束漂移主动补偿方法,该方法集自动式角度转向和PID控制的精细角度运动功能于一体。在介绍了波长测量和激光束漂移补偿原理的基础上,实验结果验证了该波长计在实时波长测量中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of a compact laser wavemeter with compensation of laser beam drift
A compact diffracting grating based laser wavemeter is constructed in this paper. Wavelength is the length unit of laser interferometers, it must be very accurate and stable during the length measurement. An air sensor, which is employed to correct the air refractive index through an empirical equation, is essential in laser interferometers. However, the empirical equation is suffered from indirect measurement, the correction accuracy is depended on the measurement accuracy of the air sensor. Slow response is other disadvantages of the empirical equation. Additional, the empirical equation is not applicable to correct the laser diode wavelength. Therefore, a direct measurement method of laser diode wavelength, based on the diffraction principle, is proposed and a compact, low-cost and simple wavemeter is constructed in this paper. Laser beam drift is recognized as one of critical error source in laser measurement. Therefore, a novel laser beam drift active compensation method is thus proposed in this study that integrates the functions of automatic type angle turning and PID controlled fine angle motion. After introducing the principles of wavelength measurement and laser beam drift compensation, the effectiveness of the wavemeter in real-time wavelength measurement is well verified by the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel two-dimensional inductive sensor based on planar coils Combining compound eyes and human eye: a hybrid bionic imaging method for FOV extension and foveated vision Measurement of deionized water density based on single silicon sphere Research of variable-frequency big current calibration The optimization of segment’s axial support point for large astronomical telescopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1