{"title":"经验贝叶斯技术在多概率同时估计中的应用","authors":"S. Brier, S. Zacks, W. Marlow","doi":"10.1002/NAV.3800330107","DOIUrl":null,"url":null,"abstract":"Consider the following situation: Each of N different combat units is presented with a number of requirements to satisfy, each requirement being classified into one of K mutually exclusive categories. For each unit and each category, an estimate of the probability of that unit satisfying any requirement in that category is desired. The problem can be generally stated as that of estimating N different K-dimensional vectors of probabilities based upon a corresponding set of K-dimensional vectors of sample proportions. An empirical Bayes model is formulated and applied to an example from the Marine Corps Combat Readiness Evaluation System (MCCRES). The EM algorithm provides a convenient method of estimating the prior parameters. The Bayes estimates are compared to the ordinary estimates, i.e., the sample proportions, by means of cross validation, and the Bayes estimates are shown to provide considerable improvement.","PeriodicalId":431817,"journal":{"name":"Naval Research Logistics Quarterly","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An application of empirical bayes techniques to the simultaneous estimation of many probabilities\",\"authors\":\"S. Brier, S. Zacks, W. Marlow\",\"doi\":\"10.1002/NAV.3800330107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the following situation: Each of N different combat units is presented with a number of requirements to satisfy, each requirement being classified into one of K mutually exclusive categories. For each unit and each category, an estimate of the probability of that unit satisfying any requirement in that category is desired. The problem can be generally stated as that of estimating N different K-dimensional vectors of probabilities based upon a corresponding set of K-dimensional vectors of sample proportions. An empirical Bayes model is formulated and applied to an example from the Marine Corps Combat Readiness Evaluation System (MCCRES). The EM algorithm provides a convenient method of estimating the prior parameters. The Bayes estimates are compared to the ordinary estimates, i.e., the sample proportions, by means of cross validation, and the Bayes estimates are shown to provide considerable improvement.\",\"PeriodicalId\":431817,\"journal\":{\"name\":\"Naval Research Logistics Quarterly\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naval Research Logistics Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/NAV.3800330107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAV.3800330107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An application of empirical bayes techniques to the simultaneous estimation of many probabilities
Consider the following situation: Each of N different combat units is presented with a number of requirements to satisfy, each requirement being classified into one of K mutually exclusive categories. For each unit and each category, an estimate of the probability of that unit satisfying any requirement in that category is desired. The problem can be generally stated as that of estimating N different K-dimensional vectors of probabilities based upon a corresponding set of K-dimensional vectors of sample proportions. An empirical Bayes model is formulated and applied to an example from the Marine Corps Combat Readiness Evaluation System (MCCRES). The EM algorithm provides a convenient method of estimating the prior parameters. The Bayes estimates are compared to the ordinary estimates, i.e., the sample proportions, by means of cross validation, and the Bayes estimates are shown to provide considerable improvement.