降低列车自动流体联轴器插入力的末端执行器柔度的初步研究

Kourosh Eshraghi, P. Jiang, Daniele Suraci, M. Atherton
{"title":"降低列车自动流体联轴器插入力的末端执行器柔度的初步研究","authors":"Kourosh Eshraghi, P. Jiang, Daniele Suraci, M. Atherton","doi":"10.3233/jid200017","DOIUrl":null,"url":null,"abstract":"Robotic assembly of mating parts (peg-in-hole (PiH)) inevitably encounters misalignments. Although passive end-effector compliance is key to successful alignment during the assembly, the literature does not propose many solutions for large misalignments, which is relevant to applications such as compliance of a robot end-effector for train fluid servicing. The results from physical experiments indicate insertion forces that are too large for practical applications, even with small misalignments. This preliminary study applies a hybrid approach combining physical experiments and simulation modelling for large motion PiH coupling with end-effector compliance. This provides a platform for investigating insertion force during misaligned coupling. The simulation model contains configurable parameters for robot compliance and PiH friction which are informed by the physical experiment results. The many robot compliances are lumped as two torsional springs on the pitch and yaw motion axis of the robot arm model. The simulation model is then calibrated using the physical results without having to conduct further intensive physical experiments. The calibrated model represents the physical measurements to a satisfactory degree, however its performance can still be improved.","PeriodicalId":342559,"journal":{"name":"J. Integr. Des. Process. Sci.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preliminary Study of End-Effector Compliance for Reducing Insertion Force in Automated Fluid Coupling for Trains\",\"authors\":\"Kourosh Eshraghi, P. Jiang, Daniele Suraci, M. Atherton\",\"doi\":\"10.3233/jid200017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic assembly of mating parts (peg-in-hole (PiH)) inevitably encounters misalignments. Although passive end-effector compliance is key to successful alignment during the assembly, the literature does not propose many solutions for large misalignments, which is relevant to applications such as compliance of a robot end-effector for train fluid servicing. The results from physical experiments indicate insertion forces that are too large for practical applications, even with small misalignments. This preliminary study applies a hybrid approach combining physical experiments and simulation modelling for large motion PiH coupling with end-effector compliance. This provides a platform for investigating insertion force during misaligned coupling. The simulation model contains configurable parameters for robot compliance and PiH friction which are informed by the physical experiment results. The many robot compliances are lumped as two torsional springs on the pitch and yaw motion axis of the robot arm model. The simulation model is then calibrated using the physical results without having to conduct further intensive physical experiments. The calibrated model represents the physical measurements to a satisfactory degree, however its performance can still be improved.\",\"PeriodicalId\":342559,\"journal\":{\"name\":\"J. Integr. Des. Process. Sci.\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Integr. Des. Process. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jid200017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Integr. Des. Process. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jid200017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器人装配配合部件(钉孔(PiH))不可避免地会遇到错位。虽然被动末端执行器的顺应性是装配过程中成功对准的关键,但文献并没有提出许多解决大错位的方案,这与机器人末端执行器的顺应性等应用有关。物理实验结果表明,插入力对于实际应用来说太大了,即使有很小的错位。本初步研究采用物理实验和仿真建模相结合的方法,对具有末端执行器柔顺性的大运动PiH耦合进行了研究。这为研究错位耦合过程中的插入力提供了一个平台。仿真模型包含机器人柔度和PiH摩擦的可配置参数,这些参数由物理实验结果提供。将多个机器人柔度集中为机械臂模型俯仰和横摆运动轴上的两个扭转弹簧。然后使用物理结果校准模拟模型,而无需进行进一步的密集物理实验。校正后的模型能较好地反映物理测量结果,但其性能仍有待改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preliminary Study of End-Effector Compliance for Reducing Insertion Force in Automated Fluid Coupling for Trains
Robotic assembly of mating parts (peg-in-hole (PiH)) inevitably encounters misalignments. Although passive end-effector compliance is key to successful alignment during the assembly, the literature does not propose many solutions for large misalignments, which is relevant to applications such as compliance of a robot end-effector for train fluid servicing. The results from physical experiments indicate insertion forces that are too large for practical applications, even with small misalignments. This preliminary study applies a hybrid approach combining physical experiments and simulation modelling for large motion PiH coupling with end-effector compliance. This provides a platform for investigating insertion force during misaligned coupling. The simulation model contains configurable parameters for robot compliance and PiH friction which are informed by the physical experiment results. The many robot compliances are lumped as two torsional springs on the pitch and yaw motion axis of the robot arm model. The simulation model is then calibrated using the physical results without having to conduct further intensive physical experiments. The calibrated model represents the physical measurements to a satisfactory degree, however its performance can still be improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The need for innovations in healthcare systems using patient experience and advancing information technology An Investigation into the Development of Convergence Engineering Digital Engineering Transformation with Trustworthy AI towards Industry 4.0: Emerging Paradigm Shifts Footsteps Towards a Transdisciplinary Design and Process Science THE RELATIVISTIC OBSERVER: Consequences of a Linear Expansion of Spacetime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1