基于EPSO的多场景安全约束无功规划工具

H. Keko, Á. J. Duque, Vladimiro Miranda
{"title":"基于EPSO的多场景安全约束无功规划工具","authors":"H. Keko, Á. J. Duque, Vladimiro Miranda","doi":"10.1109/ISAP.2007.4441589","DOIUrl":null,"url":null,"abstract":"Evolutionary particle swarm optimization (EPSO) is a robust optimization algorithm belonging to evolutionary methods. EPSO borrows the movement rules from particle swarm optimization (PSO) and uses it as a recombination operator that evolves under selection. This paper presents a reactive power planning approach taking advantage of EPSO robustness, in a model that considers simultaneously multiple contingencies and multiple load levels. Results for selected problems are summarized including a trade-off analysis of results.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Multiple Scenario Security Constrained Reactive Power Planning Tool Using EPSO\",\"authors\":\"H. Keko, Á. J. Duque, Vladimiro Miranda\",\"doi\":\"10.1109/ISAP.2007.4441589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary particle swarm optimization (EPSO) is a robust optimization algorithm belonging to evolutionary methods. EPSO borrows the movement rules from particle swarm optimization (PSO) and uses it as a recombination operator that evolves under selection. This paper presents a reactive power planning approach taking advantage of EPSO robustness, in a model that considers simultaneously multiple contingencies and multiple load levels. Results for selected problems are summarized including a trade-off analysis of results.\",\"PeriodicalId\":320068,\"journal\":{\"name\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2007.4441589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

进化粒子群优化算法(EPSO)是一种鲁棒优化算法,属于进化方法。EPSO借鉴粒子群算法的运动规律,将其作为一种在选择下进化的重组算子。本文提出了一种利用EPSO鲁棒性的无功规划方法,该方法同时考虑了多个突发事件和多个负荷水平。对选定问题的结果进行总结,包括对结果的权衡分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multiple Scenario Security Constrained Reactive Power Planning Tool Using EPSO
Evolutionary particle swarm optimization (EPSO) is a robust optimization algorithm belonging to evolutionary methods. EPSO borrows the movement rules from particle swarm optimization (PSO) and uses it as a recombination operator that evolves under selection. This paper presents a reactive power planning approach taking advantage of EPSO robustness, in a model that considers simultaneously multiple contingencies and multiple load levels. Results for selected problems are summarized including a trade-off analysis of results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Online Estimate of System Parameters For Adaptive Tuning on Automatic Generation Control Exploiting Multi-agent System Technology within an Autonomous Regional Active Network Management System PC Cluster based Parallel PSO Algorithm for Optimal Power Flow MFFN based Static Synchronous Series Compensator (SSSC) for Transient Stability improvement Reactive Power Management in Offshore Wind Farms by Adaptive PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1