基于电话n图剪枝和KPCA的说话人识别方法

Hongge Yao, Wu Guo
{"title":"基于电话n图剪枝和KPCA的说话人识别方法","authors":"Hongge Yao, Wu Guo","doi":"10.1109/ICCEE.2009.21","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of disturbance due to data sparsity for the baseline phone n-gram system, a method based on Phone N-gram pruning and KPCA is brought forward. The phone n-gram with low probability is firstly pruned in the phone n-gram super vector. The kernel principal component analysis (KPCA) is then adopted to remove the bias which is brought about due to data sparse. When applying this method to the NIST 2006 speaker recognition evaluation (SRE) database, experimental results shows that a relative reduction of up to 29% in Error Equal Ratio (EER) is achieved over the previous baseline phone n-gram system.","PeriodicalId":343870,"journal":{"name":"2009 Second International Conference on Computer and Electrical Engineering","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speaker Recognition Method Based on Phone N-gram Pruning and KPCA\",\"authors\":\"Hongge Yao, Wu Guo\",\"doi\":\"10.1109/ICCEE.2009.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problem of disturbance due to data sparsity for the baseline phone n-gram system, a method based on Phone N-gram pruning and KPCA is brought forward. The phone n-gram with low probability is firstly pruned in the phone n-gram super vector. The kernel principal component analysis (KPCA) is then adopted to remove the bias which is brought about due to data sparse. When applying this method to the NIST 2006 speaker recognition evaluation (SRE) database, experimental results shows that a relative reduction of up to 29% in Error Equal Ratio (EER) is achieved over the previous baseline phone n-gram system.\",\"PeriodicalId\":343870,\"journal\":{\"name\":\"2009 Second International Conference on Computer and Electrical Engineering\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Conference on Computer and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEE.2009.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Computer and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEE.2009.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决基线phone n-gram系统由于数据稀疏性造成的干扰问题,提出了一种基于phone n-gram剪枝和KPCA的方法。首先在电话n-gram超向量中对低概率的电话n-gram进行剪枝。然后采用核主成分分析(KPCA)来消除由于数据稀疏而带来的偏差。将该方法应用到NIST 2006说话人识别评估(SRE)数据库中,实验结果表明,与之前的基准电话n-gram系统相比,该方法的误差率(EER)相对降低了29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speaker Recognition Method Based on Phone N-gram Pruning and KPCA
In order to solve the problem of disturbance due to data sparsity for the baseline phone n-gram system, a method based on Phone N-gram pruning and KPCA is brought forward. The phone n-gram with low probability is firstly pruned in the phone n-gram super vector. The kernel principal component analysis (KPCA) is then adopted to remove the bias which is brought about due to data sparse. When applying this method to the NIST 2006 speaker recognition evaluation (SRE) database, experimental results shows that a relative reduction of up to 29% in Error Equal Ratio (EER) is achieved over the previous baseline phone n-gram system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ID Based Signature Schemes for Electronic Voting Service Oriented Approach to Improve the Power of Snorts On-line Colour Image Compression Based on Pipelined Architecture CMMP: Clustering-Based Multi-channel MAC Protocol in VANET Computer Aided Protection (Overcurrent) Coordination Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1